美文网首页孟德尔随机化
孟德尔随机化--初筛

孟德尔随机化--初筛

作者: 生信蟹道人 | 来源:发表于2023-03-22 19:54 被阅读0次

    孟德尔随机化--初筛

    image.png

    各位观众老爷们大家好,欢迎来到蟹道人的生信小课堂!

    本节内容我们主要讲解如何进行孟德尔随机化暴露与结局的快速初筛。

    主要列举以下几个方法:

    基于我自己写的一个小的R包:friendly2MR;

    基于epigraphdb数据库开发epigraphdb包;

    基于epigraphdb在线网站

    实用教程:

    基于我自己写的一个小的R包:friendly2MR:

    安装和加载:

    if (!requireNamespace("remotes", quietly = TRUE))install.packages("remotes")
    remotes::install_github("xiechengyong123/friendly2MR")
    library(friendly2MR)
    
    

    使用:

    # 测试多个暴露对一个结局的阳性结果 ----------------------------------------------------------------------
    #rm(list = ls())
    library(TwoSampleMR)
    library(friendly2MR)
    # List available GWASs
    ao <- available_outcomes(access_token = NULL)
    
    ao1=ao[grep("ukb",ao$id),]
    #IEU GWAS 数据ID
    exposure <-ao1$id
    exposure=exposure[1:20]
    
    #调用函数,生成结果
    mr_mul2one=find_anyexposur_outcome(exposure,"ieu-a-7",write=T)
    
    # 测试一个暴露对多个结局的阳性结果 ----------------------------------------------------------------------
    # rm(list = ls())
    library(TwoSampleMR)
    library(friendly2MR)
    # List available GWASs
    # ao <- available_outcomes(access_token =NULL)
    
    ao1=ao[grep("ukb",ao$id),]
    #IEU GWAS 数据ID
    outcome <-ao1$id
    outcome=outcome[1:20]
    mr_one2mul=find_exposur_anyoutcome("ieu-a-7",outcome,write=T)
    
    

    结果:

    mr_mul2one:

    id.exposure id.outcome conclusion
    ukb-b-1489 ieu-a-7 初筛结果阳性
    ukb-b-8727 ieu-a-7 初筛结果无阳性
    ukb-a-583 ieu-a-7 需要重新设定LD阈值,否则无法进行MR分析
    ukb-b-12466 ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-767_EAS ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-1707_p1_MID ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-1883_AFR ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-b-5326 ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-d-22608_2 ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-d-5610_3 ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-2100_AFR ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-20019_CSA ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-b-20382 ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-4825_EAS ieu-a-7 初筛结果无阳性
    ukb-e-24015_AFR ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-e-104900_AFR ieu-a-7 筛选暴露P值太小,无法进行MR分析
    ukb-b-19277 ieu-a-7 初筛结果阳性
    ukb-b-17772 ieu-a-7 初筛结果阳性
    ukb-d-22660_107 ieu-a-7 初筛结果无阳性
    ukb-b-5863 ieu-a-7 筛选暴露P值太小,无法进行MR分析

    mr_one2mul:

    id.exposure id.outcome conclusion
    ieu-a-7 ukb-b-1489 初筛结果阳性
    ieu-a-7 ukb-b-8727 初筛结果无阳性
    ieu-a-7 ukb-a-583 初筛结果无阳性
    ieu-a-7 ukb-b-12466 初筛结果无阳性
    ieu-a-7 ukb-e-767_EAS 初筛结果无阳性
    ieu-a-7 ukb-e-1707_p1_MID 需要重新设定LD阈值,否则无法进行MR分析
    ieu-a-7 ukb-e-1883_AFR 初筛结果无阳性
    ieu-a-7 ukb-b-5326 初筛结果无阳性
    ieu-a-7 ukb-d-22608_2 初筛结果无阳性
    ieu-a-7 ukb-d-5610_3 初筛结果无阳性
    ieu-a-7 ukb-e-2100_AFR 初筛结果阳性
    ieu-a-7 ukb-e-20019_CSA 初筛结果无阳性
    ieu-a-7 ukb-b-20382 初筛结果无阳性
    ieu-a-7 ukb-e-4825_EAS 初筛结果无阳性
    ieu-a-7 ukb-e-24015_AFR 初筛结果无阳性
    ieu-a-7 ukb-e-104900_AFR 初筛结果无阳性
    ieu-a-7 ukb-b-19277 初筛结果无阳性
    ieu-a-7 ukb-b-17772 初筛结果无阳性
    ieu-a-7 ukb-d-22660_107 初筛结果无阳性
    ieu-a-7 ukb-b-5863 初筛结果无阳性

    基于epigraphdb数据库开发epigraphdb包:

    安装以及加载:

    if (!requireNamespace("epigraphdb", quietly = TRUE))install.packages("epigraphdb")
    library("epigraphdb")
    
    

    封装函数调用:

    # 筛选多个暴露和多个结局中的显著结果 -------------------------------------------------------
    fast_screen=function(exposure = NULL, 
                         outcome = NULL, 
                         pval_threshold = 1e-05, 
                         write=T,
                         file="fast_screen.csv"){
      start=Sys.time()
      cat("##########################开始筛查######################################\n")
      #设置mr_fast_result_all
      mr_fast_result_all<-data.frame()
      #首先生成IEU的性状信息:
      if(!file.exists("IEU_ao.RData")){
        ao <- available_outcomes()
        write.csv(ao,file = "IEU_ao.csv")
        save(ao,file = "IEU_ao.RData")
      }
      load(file = "IEU_ao.RData")
    
      exposure_length=length(exposure)
      outcome_length=length(outcome)
    
      for (i in 1:exposure_length) {
        for (j in 1:outcome_length) {
          exposure_id = exposure[i]
          outcome_id = outcome[j]
          # #判断暴露id和性状是否在数据库中
          # if (sum((exposure_id %in% ao$trait),(exposure_id %in% ao$id))>0) {
          # }else{stop("\n##########################该暴露不在数据库中######################################\n")}
          # # #判断结局id和性状是否在数据库中
          # if (sum((outcome_id %in% ao$trait),(outcome_id %in% ao$id))>0) {
          # }else{stop("\n##########################该结局不在数据库中######################################\n")}
          #首先判断是ieu号还是性状名称:
          if (!is.null(exposure_id)) {
            if (exposure_id %in% ao$id) {
              exposure_trait <- ao[ao$id == exposure_id, ]$trait
            } else{
              exposure_trait = exposure_id
            }
          } else{
            exposure_trait = exposure_id
          }
    
          if (!is.null(outcome)) {
            if (outcome_id %in% ao$id) {
              outcome_trait <- ao[ao$id == outcome_id, ]$trait
            } else{
              outcome_trait = outcome_id
            }
          } else{
            outcome_trait = outcome_id
          }
    
          mr_fast_result = epigraphdb::mr(
            exposure_trait = exposure_trait,
            pval_threshold = pval_threshold,
            outcome_trait = outcome_trait,
            mode = "table"
          )
    
          #根据ieu号进行筛选:
          # mr_fast_result1<-data.frame()
          if (!is.null(exposure_id)) {
            if (exposure_id %in% ao$id) {
              mr_fast_result <-
                mr_fast_result[mr_fast_result$exposure.id == exposure_id, ]
            }else{mr_fast_result=mr_fast_result}
          }
          # mr_fast_result1 <- unique(rbind(mr_fast_result1, mr_fast_result1))
    
          # mr_fast_result2<-data.frame()
          if (!is.null(outcome_id)) {
            if (outcome_id %in% ao$id) {
              mr_fast_result <- mr_fast_result[mr_fast_result$outcome.id == outcome_id, ]
            }else{mr_fast_result=mr_fast_result}
          }
          # 多个结果合并
          # mr_fast_result2 <- unique(rbind(mr_fast_result2,mr_fast_result2))
          mr_fast_result_all<-unique(rbind(mr_fast_result,mr_fast_result_all))
    
        } 
      }
      # mr_fast_result_all<-unique(rbind(mr_fast_result_all,mr_fast_result_all))
    
      if (write) {
        write.csv(mr_fast_result_all,file=file,row.names = F)
      }
      end=Sys.time()
      print(end-start)
      cat("##########################筛查结束######################################\n")
    
      return(mr_fast_result_all)
    }
    
    #筛选一个暴露和所有结局中的显著结果
    mv_mr_result=fast_screen(exposure="Body mass index")
    mv_mr_result1=fast_screen(exposure="ieu-a-2")
    
    #筛选所有暴露和一个结局中的显著结果
    mv_mr_result2=fast_screen(outcome="Coronary heart disease")
    mv_mr_result3=fast_screen(outcome="ieu-a-7")
    
    #筛选一个暴露和一个结局中的显著结果
    mv_mr_result4=fast_screen(exposure="Body mass index",outcome="Coronary heart disease")
    mv_mr_result5=fast_screen(exposure="ieu-a-2",outcome="ieu-a-7")
    mv_mr_result6=fast_screen(exposure="Body mass index",outcome="ieu-a-7")
    mv_mr_result7=fast_screen(exposure="ieu-a-2",outcome="Coronary heart disease")
    
    #筛选多个暴露和所有结局
    mv_mr_result8=fast_screen(exposure=c("Body mass index","Coronary heart disease"))
    
    mv_mr_result9=fast_screen(exposure=c("Coronary heart disease","ieu-a-2"))
    
    mv_mr_result10=fast_screen(exposure=c("Body mass index","ieu-a-7"))
    
    mv_mr_result11=fast_screen(exposure=c("ieu-a-2","ieu-a-7"))
    
    #筛选所有暴露和多个结局
    mv_mr_result12=fast_screen(outcome=c("Body mass index","Coronary heart disease"))
    
    mv_mr_result3=fast_screen(outcome=c("ieu-a-2","Coronary heart disease"))
    
    mv_mr_result14=fast_screen(outcome=c("Body mass index","ieu-a-7"))
    
    mv_mr_result15=fast_screen(outcome=c("ieu-a-2","ieu-a-7"))
    
    #筛选多个暴露和多个结局
    mv_mr_result16=fast_screen(exposure=c("Body mass index","Coronary heart disease"),outcome=c("Body mass index","Coronary heart disease"))
    
    mv_mr_result17=fast_screen(outcome=c("ieu-a-2","Coronary heart disease"))
    
    mv_mr_result18=fast_screen(outcome=c("Body mass index","ieu-a-7"))
    
    mv_mr_result19=fast_screen(outcome=c("ieu-a-2","ieu-a-7"))
    
    mv_mr_result20=fast_screen(exposure=c("ieu-a-2","ieu-a-7"),outcome=c("ieu-a-2","ieu-a-7"))
    mv_mr_result21=fast_screen(exposure="ieu-a-2",outcome="ieu-a-7")
    mv_mr_result22=fast_screen(exposure="ieu-a-7",outcome="ieu-a-2")
    
    

    结果:

    mv_mr_result:

    exposure.id exposure.trait outcome.id outcome.trait mr.b mr.se mr.pval mr.method mr.selection mr.moescore
    ieu-a-974 Body mass index ebi-a-GCST005062 Fibrinogen levels 0.193038233 0.002236082 0 FE IVW DF 1
    ebi-a-GCST006368 Body mass index ukb-b-20188 Arm fat percentage (left) 0.533277383 0.010444881 0 FE IVW DF + HF 0.93
    ieu-a-2 Body mass index ukb-b-4650 Comparative body size at age 10 0.439223556 0.009889465 0 FE IVW Tophits 0.9
    ieu-a-2 Body mass index ukb-b-2303 Body mass index (BMI) 0.673901055 0.017841589 0 FE IVW DF + HF 0.92
    ieu-a-2 Body mass index ukb-b-16446 Basal metabolic rate 0.44864951 0.011831593 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ukb-a-282 Arm fat percentage (right) 0.527720537 0.012506983 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ieu-a-94 Body mass index 1.008870831 0.02685817 0 FE IVW HF 0.86
    ieu-a-2 Body mass index ieu-a-48 Hip circumference 0.828391733 0.014868948 0 FE IVW Tophits 0.91
    ieu-a-2 Body mass index ukb-b-9405 Waist circumference 0.644965247 0.012623943 0 FE IVW Tophits 0.94
    ieu-a-2 Body mass index ukb-b-9093 Arm predicted mass (left) 0.398396568 0.008409717 0 FE IVW Tophits 0.92
    ieu-a-785 Body mass index ieu-a-85 Extreme body mass index 1.717111367 0.001634409 0 FE IVW DF + HF 0.82
    ebi-a-GCST004904 Body mass index ukb-b-2303 Body mass index (BMI) 0.59491911 0.015287241 0 FE IVW Tophits 0.81
    ieu-a-835 Body mass index ukb-b-18096 Leg fat mass (right) 0.607879093 0.013882094 0 FE IVW DF + HF 0.94
    ieu-a-835 Body mass index ukb-b-12854 Arm fat percentage (right) 0.525880654 0.013035386 0 FE IVW DF + HF 0.96
    ieu-a-835 Body mass index ieu-a-93 Overweight 1.671102672 0.034075749 0 FE IVW Tophits 0.84
    ieu-a-835 Body mass index ieu-a-61 Waist circumference 0.823566324 0.019441318 0 FE IVW Tophits 0.94
    ieu-a-835 Body mass index ieu-a-60 Waist circumference 0.819575103 0.019483688 0 FE IVW Tophits 0.9
    ieu-a-2 Body mass index ieu-a-65 Waist circumference 0.731622271 0.020027625 3.62E-292 FE IVW DF + HF 0.88
    ebi-a-GCST004904 Body mass index ukb-b-16099 Leg fat-free mass (left) 0.338792555 0.009287316 2.38E-291 FE IVW Tophits 0.83
    ieu-a-835 Body mass index ieu-a-50 Hip circumference 0.836276005 0.022981123 6.20E-290 FE IVW HF 0.89
    ieu-a-2 Body mass index ukb-b-15590 Hip circumference 0.651710135 0.017978537 1.02E-287 FE IVW DF + HF 0.91
    ebi-a-GCST006368 Body mass index ieu-a-94 Body mass index 0.964264501 0.02711376 5.11E-277 FE IVW Tophits 0.84
    ebi-a-GCST006368 Body mass index ukb-b-7212 Leg fat mass (left) 0.617988587 0.017559991 2.56E-271 Weighted median HF 0.89
    ieu-a-95 Body mass index ieu-a-974 Body mass index 0.980908389 0.027924883 2.64E-270 FE IVW HF 0.74
    ieu-a-835 Body mass index ukb-b-15590 Hip circumference 0.648765312 0.018483694 6.90E-270 FE IVW DF + HF 0.93
    ieu-a-835 Body mass index ieu-a-64 Waist circumference 0.739561429 0.021168464 2.04E-267 FE IVW DF + HF 0.89
    ieu-a-2 Body mass index ukb-a-277 Leg predicted mass (right) 0.443018641 0.012685733 3.38E-267 FE IVW DF + HF 0.91
    ieu-a-785 Body mass index ieu-a-52 Hip circumference 0.76669586 0.022013173 8.87E-266 FE IVW DF + HF 0.92
    ieu-a-835 Body mass index ieu-a-94 Body mass index 1.002287387 0.028871062 4.52E-264 FE IVW HF 0.82

    mv_mr_result1:

    exposure.id exposure.trait outcome.id outcome.trait mr.b mr.se mr.pval mr.method mr.selection mr.moescore
    ieu-a-2 Body mass index ukb-b-4650 Comparative body size at age 10 0.439223556 0.009889465 0 FE IVW Tophits 0.9
    ieu-a-2 Body mass index ukb-b-2303 Body mass index (BMI) 0.673901055 0.017841589 0 FE IVW DF + HF 0.92
    ieu-a-2 Body mass index ukb-b-16446 Basal metabolic rate 0.44864951 0.011831593 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ukb-a-282 Arm fat percentage (right) 0.527720537 0.012506983 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ieu-a-94 Body mass index 1.008870831 0.02685817 0 FE IVW HF 0.86
    ieu-a-2 Body mass index ieu-a-48 Hip circumference 0.828391733 0.014868948 0 FE IVW Tophits 0.91
    ieu-a-2 Body mass index ukb-b-9405 Waist circumference 0.644965247 0.012623943 0 FE IVW Tophits 0.94
    ieu-a-2 Body mass index ukb-b-9093 Arm predicted mass (left) 0.398396568 0.008409717 0 FE IVW Tophits 0.92
    ieu-a-2 Body mass index ieu-a-65 Waist circumference 0.731622271 0.020027625 3.62E-292 FE IVW DF + HF 0.88
    ieu-a-2 Body mass index ukb-b-15590 Hip circumference 0.651710135 0.017978537 1.02E-287 FE IVW DF + HF 0.91
    ieu-a-2 Body mass index ukb-a-277 Leg predicted mass (right) 0.443018641 0.012685733 3.38E-267 FE IVW DF + HF 0.91
    ieu-a-2 Body mass index ukb-b-7212 Leg fat mass (left) 0.648456311 0.018929275 3.45E-257 Simple median Tophits 0.93
    ieu-a-2 Body mass index ieu-a-52 Hip circumference 0.797228817 0.023501272 3.07E-252 FE IVW Tophits 0.85
    ieu-a-2 Body mass index ieu-a-53 Hip circumference 0.81089765 0.024143591 2.65E-247 FE IVW Tophits 0.85
    ieu-a-2 Body mass index ukb-b-18096 Leg fat mass (right) 0.637960977 0.019111543 2.59E-244 Simple median Tophits 0.92
    ieu-a-2 Body mass index ukb-b-6704 Arm fat mass (right) 0.81387157 0.024648715 4.36E-239 Simple median Tophits 0.9
    ieu-a-2 Body mass index ieu-a-107 Weight 0.965895656 0.029396065 8.76E-237 FE IVW Tophits 0.86
    ieu-a-2 Body mass index ukb-b-19393 Whole body fat mass 0.763723593 0.023467402 2.54E-232 Simple median Tophits 0.91
    ieu-a-2 Body mass index ukb-b-8338 Arm fat mass (left) 0.814308642 0.025767648 3.47E-219 Simple median Tophits 0.91
    ieu-a-2 Body mass index ukb-a-248 Body mass index (BMI) 0.841602649 0.026890568 5.08E-215 Simple median HF 0.92
    ieu-a-2 Body mass index ukb-a-275 Leg fat mass (right) 0.640040167 0.020840402 4.00E-207 Weighted median HF 0.93
    ieu-a-2 Body mass index ukb-b-18377 Leg fat percentage (left) 0.428676596 0.014325895 9.82E-197 Simple median HF 0.92

    mv_mr_result2:

    exposure.id exposure.trait outcome.id outcome.trait mr.b mr.se mr.pval mr.method mr.selection mr.moescore
    ubm-a-496 IDP dMRI TBSS ICVF Superior cerebellar peduncle R ebi-a-GCST000998 Coronary heart disease 0.136105468 0.000331893 0 FE IVW DF 1
    ubm-a-2677 volume Right-Cerebellum-Cortex ebi-a-GCST000998 Coronary heart disease -0.22925404 0.005693358 0 FE IVW DF 1
    ubm-a-496 IDP dMRI TBSS ICVF Superior cerebellar peduncle R ieu-a-8 Coronary heart disease 0.136105468 0.000331893 0 FE IVW DF 1
    ubm-a-2677 volume Right-Cerebellum-Cortex ieu-a-8 Coronary heart disease -0.22925404 0.005693358 0 FE IVW DF 1
    ukb-a-309 Other serious medical condition/disability diagnosed by doctor ieu-a-7 Coronary heart disease 2.760557121 0.059659725 0 FE IVW DF 1
    prot-a-67 Alcohol dehydrogenase [NADP(+)] ieu-a-7 Coronary heart disease -0.018451731 1.50E-05 0 FE IVW DF 1
    prot-a-399 C-C motif chemokine 23 ieu-a-7 Coronary heart disease 0.018490732 0.00048839 0 FE IVW DF 1
    prot-a-2427 Prostaglandin F2 receptor negative regulator ieu-a-7 Coronary heart disease -0.017530907 0.000307085 0 FE IVW DF 1
    prot-a-1792 Leucine-rich repeat neuronal protein 1 ieu-a-7 Coronary heart disease 0.07904299 0.002053008 0 FE IVW DF 1
    prot-a-1666 Kallikrein-7 ieu-a-7 Coronary heart disease -0.034176952 0.00030915 0 FE IVW DF 1
    prot-a-1587 Inter-alpha-trypsin inhibitor heavy chain H5 ieu-a-7 Coronary heart disease -0.058270284 0.001067473 0 FE IVW DF 1
    ukb-d-I9_IHD Ischaemic heart disease, wide definition ieu-a-9 Coronary heart disease 11.44308868 0.184143218 0 FE IVW DF 1
    ukb-a-12 Nap during day ieu-a-9 Coronary heart disease 2.437416506 0.008056364 0 FE IVW DF 1
    ieu-a-796 Urate ieu-a-9 Coronary heart disease 0.148498726 0.001844479 0 FE IVW DF 1
    ukb-b-3278 Length of menstrual cycle ieu-a-6 Coronary heart disease 0.344276965 0.004943106 0 FE IVW DF 1
    ukb-b-1806 Number of symbol digit matches attempted ieu-a-6 Coronary heart disease -0.708949098 0.006804179 0 FE IVW DF 1
    ukb-a-23 Number of operations self-reported ieu-a-6 Coronary heart disease 1.153492785 0.02236149 0 FE IVW DF 1
    ebi-a-GCST005038 Allergic disease (asthma, hay fever or eczema) ieu-a-9 Coronary heart disease -0.144630627 0.001863039 0 FE IVW DF 1
    prot-a-2215 Programmed cell death 1 ligand 2 ieu-a-6 Coronary heart disease -0.030704826 0.00082524 5.23E-303 FE IVW DF 1
    met-c-918 Phosphatidylcholine and other cholines ebi-a-GCST000998 Coronary heart disease 0.049792917 0.001370729 6.32E-289 FE IVW DF 1
    met-c-918 Phosphatidylcholine and other cholines ieu-a-8 Coronary heart disease 0.049792917 0.001370729 6.32E-289 FE IVW DF 1
    prot-a-2039 Neurofascin ieu-a-8 Coronary heart disease 0.010041464 0.000277356 5.21E-287 FE IVW DF 1

    mv_mr_result3:

    exposure.id exposure.trait outcome.id outcome.trait mr.b mr.se mr.pval mr.method mr.selection mr.moescore
    ukb-a-309 Other serious medical condition/disability diagnosed by doctor ieu-a-7 Coronary heart disease 2.760557121 0.059659725 0 FE IVW DF 1
    prot-a-67 Alcohol dehydrogenase [NADP(+)] ieu-a-7 Coronary heart disease -0.018451731 1.50E-05 0 FE IVW DF 1
    prot-a-399 C-C motif chemokine 23 ieu-a-7 Coronary heart disease 0.018490732 0.00048839 0 FE IVW DF 1
    prot-a-2427 Prostaglandin F2 receptor negative regulator ieu-a-7 Coronary heart disease -0.017530907 0.000307085 0 FE IVW DF 1
    prot-a-1792 Leucine-rich repeat neuronal protein 1 ieu-a-7 Coronary heart disease 0.07904299 0.002053008 0 FE IVW DF 1
    prot-a-1666 Kallikrein-7 ieu-a-7 Coronary heart disease -0.034176952 0.00030915 0 FE IVW DF 1
    prot-a-1587 Inter-alpha-trypsin inhibitor heavy chain H5 ieu-a-7 Coronary heart disease -0.058270284 0.001067473 0 FE IVW DF 1
    prot-a-2470 Sulfhydryl oxidase 2 ieu-a-7 Coronary heart disease 0.069634599 0.001998623 5.77E-266 FE IVW DF 1
    ukb-b-18189 Reason for glasses/contact lenses: For long-sightedness, i.e. for distance and near, but particularly for near tasks like reading (called 'hypermetropia') ieu-a-7 Coronary heart disease 2.379792789 0.080957625 6.26E-190 FE IVW DF 1
    prot-a-280 Uncharacterized protein C10orf35 ieu-a-7 Coronary heart disease -0.125030158 0.00453479 2.46E-167 FE IVW DF 1
    ukb-a-210 Illnesses of mother: Alzheimer's disease/dementia ieu-a-7 Coronary heart disease 1.931390023 0.077693322 2.06E-136 FE IVW DF 1
    ebi-a-GCST005920 Paternal history of Alzheimer's disease ieu-a-7 Coronary heart disease 0.171597385 0.007441708 1.20E-117 FE IVW DF 1
    prot-a-857 Dipeptidase 2 ieu-a-7 Coronary heart disease 0.073361658 0.003188102 3.61E-117 FE IVW DF 1
    prot-a-1688 Keratinocyte differentiation-associated protein ieu-a-7 Coronary heart disease 0.049755495 0.00230633 3.19E-103 FE IVW DF 1
    ebi-a-GCST005194 Coronary artery disease ieu-a-7 Coronary heart disease 0.954774586 0.017136978 4.32E-93 Simple mean HF 0.87
    ukb-b-10912 Non-cancer illness code, self-reported: high cholesterol ieu-a-7 Coronary heart disease 3.796891592 0.1862581 2.27E-92 FE IVW HF 0.96
    ukb-b-7872 Mouth/teeth dental problems: Bleeding gums ieu-a-7 Coronary heart disease 1.769264657 0.089973244 4.36E-86 FE IVW DF 1
    ukb-d-C3_PRIMARY_LYMPHOID_HEMATOPOIETIC Primary_lymphoid and hematopoietic malignant neoplasms ieu-a-7 Coronary heart disease 13.78520614 0.709314219 3.94E-84 FE IVW DF 1
    ukb-b-14177 Vascular/heart problems diagnosed by doctor: High blood pressure ieu-a-7 Coronary heart disease 1.705308306 0.092300392 3.24E-76 FE IVW Tophits 0.87
    ukb-b-18953 Operative procedures - secondary OPCS: T86.2 Sampling of axillary lymph nodes ieu-a-7 Coronary heart disease 1.122459119 0.060846997 5.49E-76 FE IVW DF 1
    prot-a-420 CD177 antigen ieu-a-7 Coronary heart disease 0.01990002 0.001147197 2.09E-67 FE IVW DF 1

    ......后续有兴趣大家可以自己试试。

    基于epigraphdb在线网站

    网站页面:

    1679537219483.png

    Network 3D图

    1679537113992.png

    效果相当炸裂

    列表:

    exposure.id(Click to sort Ascending) exposure.trait(Click to sort Ascending) outcome.id(Click to sort Ascending) outcome.trait(Click to sort Ascending) mr.b(Click to sort Ascending) mr.se(Click to sort Ascending) mr.pval(Click to sort Ascending) mr.method(Click to sort Ascending) mr.selection(Click to sort Ascending) mr.moescore(Click to sort Ascending)
    ieu-a-974 Body mass index ebi-a-GCST005062 Fibrinogen levels 0.193 0.0022 0 FE IVW DF 1
    ebi-a-GCST006368 Body mass index ukb-b-20188 Arm fat percentage (left) 0.5333 0.0104 0 FE IVW DF + HF 0.93
    ieu-a-2 Body mass index ukb-b-4650 Comparative body size at age 10 0.4392 0.0099 0 FE IVW Tophits 0.9
    ieu-a-2 Body mass index ukb-b-2303 Body mass index (BMI) 0.6739 0.0178 0 FE IVW DF + HF 0.92
    ieu-a-2 Body mass index ukb-b-16446 Basal metabolic rate 0.4486 0.0118 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ukb-a-282 Arm fat percentage (right) 0.5277 0.0125 0 FE IVW DF + HF 0.94
    ieu-a-2 Body mass index ieu-a-94 Body mass index 1.0089 0.0269 0 FE IVW HF 0.86
    ieu-a-2 Body mass index ieu-a-48 Hip circumference 0.8284 0.0149 0 FE IVW Tophits 0.91
    ieu-a-2 Body mass index ukb-b-9405 Waist circumference 0.645 0.0126 0 FE IVW Tophits 0.94
    ieu-a-2 Body mass index ukb-b-9093 Arm predicted mass (left) 0.3984 0.0084 0 FE IVW Tophits 0.92

    与R代码跑出的结果一致

    代码爬取:

    他还非常贴心的列出了如何获取相关结果的R和python代码,相当nice!


    1679537900519.png

    注意:

    请注意,epigraphdb在线数据库和R包筛选出的结果,都是使用自动算法产生的初步结果,所以应该始终通过使用进一步的方法进行分析来验证。大家有兴趣的话,可以去多多探索。。。

    使用教程

    b站链接(【孟德尔随机化--初筛2】 https://www.bilibili.com/video/BV1bm4y1k7Ca/?share_source=copy_web&vd_source=db46041789fa1bbf5497ce06b73f53d8

    相关文章

      网友评论

        本文标题:孟德尔随机化--初筛

        本文链接:https://www.haomeiwen.com/subject/iyjbrdtx.html