美文网首页
disgenet2r代码实操(一):在DisGeNET数据库中探

disgenet2r代码实操(一):在DisGeNET数据库中探

作者: 生信宝库 | 来源:发表于2023-04-28 10:20 被阅读0次

前言

在DisGeNET数据库的第一篇推文;DisGeNET数据库:人类疾病相关基因研究的百科全书中,Immugent介绍了它跨越十年的发展历程。如今,作为最权威的人类疾病基因相关数据库之一,DisGeNET数据库已经发展成一个集整合资源,网页,数据分析软件为一体的综合型数据库。

此外,在另一篇推文:disgenet2r:一个R包解决人类疾病分子功能的全部研究中,Immugent大致介绍了如何在自己的PC上构建disgenet2r包的资源,本期推文开始,生信宝库将会推出系列推文,通过代码实操的方式来演示如何将disgenet2r包运用在我们的数据分析中。


代码实操

此教程的代码需要延续上一篇推文来进行。

data1 <- gene2disease( gene = 3953, vocabulary = "ENTREZ",
                       database = "CURATED")
                       
class(data1)
## [1] "DataGeNET.DGN"
## attr(,"package")
## [1] "disgenet2r"

data1
## Object of class 'DataGeNET.DGN'
##  . Search:      single 
##  . Type:        gene-disease 
##  . Database:     CURATED 
##  . Score:        0-1 
##  . Term:        3953 
##  . Results:  89
results <- extract(data1)
head( results, 3 )
##   year_initial protein_class     el disease_type
## 1         1998  DTO:05007599 strong      disease
## 2         1966  DTO:05007599             disease
## 3         1966  DTO:05007599             disease
##                                                                      disease_class_name protein_class_name gene_dpi year_final
## 1                                                                                                Signaling    0.434       2019
## 2    Pathological Conditions, Signs and Symptoms;    Nutritional and Metabolic Diseases          Signaling    0.434       2021
## 3                      Nutritional and Metabolic Diseases;    Endocrine System Diseases          Signaling    0.434       2020
##   score disease_class disease_semantic_type    ei gene_symbol  source gene_dsi                             disease_name geneid
## 1  0.82                 Disease or Syndrome 1.000        LEPR CURATED  0.99475               LEPTIN RECEPTOR DEFICIENCY   3953
## 2  0.80       C23;C18   Disease or Syndrome 0.937        LEPR CURATED  0.99475                                  Obesity   3953
## 3  0.60       C18;C19   Disease or Syndrome 0.975        LEPR CURATED  0.99475 Diabetes Mellitus, Non-Insulin-Dependent   3953
##   gene_pli uniprotid diseaseid
## 1     0.84    P48357  C3554225
## 2     0.84    P48357  C0028754
## 3     0.84    P48357  C0011860

plot( data1,
      class = "Network",
      prop = 20)
image.png
plot( data1,      class = "DiseaseClass",      prop = 3)
image.png
data1 <- gene2evidence( gene = "LEPR",
                        vocabulary = "HGNC",
               disease ="C3554225",
                       database = "ALL",
                       score =c(0.3,1))
data1
results <- extract(data1)

探索多个基因的疾病相关性。

myListOfGenes <- c( "KCNE1", "KCNE2", "KCNH1", "KCNH2", "KCNG1")
data2 <- gene2disease(
  gene     = myListOfGenes,
  score =c(0.2, 1),
  verbose  = TRUE)
  
plot( data2,
      class = "Network",
      prop = 10)   
image.png
plot( data2,      class  ="Heatmap",      limit  = 100, nchars = 50 )
image.png
plot( data2,      class="DiseaseClass", nchars=60)
image.png

以疾病为研究对象的使用方式。

data3 <- disease2gene( disease  = "C0036341",
                          database = "CURATED",
                          score    = c( 0.4,1 ) )
data4 <- disease2gene( disease  = "181500", vocabulary = "OMIM",
                          database = "CURATED",
                          score    = c(0.4,1 ) )  
                          
plot( data3,  class="ProteinClass")           
image.png

探索与疾病相关的证据。。。

data3 <- disease2evidence( disease  = "C0036341",
                           type = "GDA",
                          database = "CURATED",
                          score    = c( 0.4,1 ) )
                          
data3 <- disease2evidence( disease  = "C0036341",
                           gene = c("DRD2", "DRD3"),
                           type = "GDA",
                          database = "CURATED",
                          score    = c( 0.4,1 ) )

results <- extract(data3)
image.png

同时搜索多种疾病。。。

diseasesOfInterest <- c("C0036341", "C0002395", "C0030567","C0005586")

data5 <- disease2gene(
  disease = diseasesOfInterest,
  database = "CURATED",
  score =c(0.4,1),
  verbose  = TRUE )
  
plot( data5,
      class="ProteinClass" )
image.png

说在最后

从上述流程我们可以看出disgenet2r包,高度集和了DisGeNET数据库的资源,而且和多种分析流程进行无缝衔接,这样使用起来就很方便。并且更加难能可贵的是,disgenet2r包输出的图都很高达上,可以直接用于我们发表的文章中。当然,disgenet2r包的功能远不止如此,Immmugent将会在下期介绍如何将突变位点和疾病相关联,敬请期待!

好啦,本期分享到这里就结束了,我们下期再会~~

相关文章

网友评论

      本文标题:disgenet2r代码实操(一):在DisGeNET数据库中探

      本文链接:https://www.haomeiwen.com/subject/jexwjdtx.html