美文网首页Android进阶之光Android网络请求开源库网络编程2
Android网络编程(七)源码解析OkHttp前篇[请求网络]

Android网络编程(七)源码解析OkHttp前篇[请求网络]

作者: 刘望舒 | 来源:发表于2016-08-06 13:58 被阅读508次

    前言

    学会了OkHttp3的用法后,我们当然有必要来了解下OkHttp3的源码,当然现在网上的文章很多,我仍旧希望我这一系列文章篇是最简洁易懂的。

    1.从请求处理开始分析

    首先OKHttp3如何使用这里就不在赘述了,不明白的同学可以查看Android网络编程(五)OkHttp2.x用法全解析
    Android网络编程(六)OkHttp3用法全解析这两篇文章。当我们要请求网络的时候我们需要用OkHttpClient.newCall(request)进行execute或者enqueue操作,当我们调用newCall时:

      @Override public Call newCall(Request request) {
        return new RealCall(this, request);
      }
    

    实际返回的是一个RealCall类,我们调用enqueue异步请求网络实际上是调用了RealCall的enqueue方法:

      void enqueue(Callback responseCallback, boolean forWebSocket) {
        synchronized (this) {
          if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
        }
        client.dispatcher().enqueue(new AsyncCall(responseCallback, forWebSocket));
      }
    

    可以看到最终的请求是dispatcher来完成的。

    2.Dispatcher任务调度

    主要的变量

    Dispatcher主要用于控制并发的请求,它主要维护了以下变量:

      /** 最大并发请求数*/
      private int maxRequests = 64;
      /** 每个主机最大请求数*/
      private int maxRequestsPerHost = 5;
      /** 消费者线程池 */
      private ExecutorService executorService;
      /** 将要运行的异步请求队列 */
      private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
      /**正在运行的异步请求队列 */
      private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
      /** 正在运行的同步请求队列 */
      private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
    

    构造函数

     public Dispatcher(ExecutorService executorService) {
        this.executorService = executorService;
      }
    
      public Dispatcher() {
      }
    
      public synchronized ExecutorService executorService() {
        if (executorService == null) {
          executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
              new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
        }
        return executorService;
      }
    

    Dispatcher有两个构造函数,可以使用自己设定线程池,如果没有设定线程池则会在请求网络前自己创建线程池,这个线程池类似于CachedThreadPool比较适合执行大量的耗时比较少的任务。不了解线程池的同学可以查看Android多线程(一)线程池这篇文章。其中用到了SynchronousQueue,不了解它的同学可以查看Java并发编程(六)阻塞队列这篇文章。

    异步请求

      synchronized void enqueue(AsyncCall call) {
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
          runningAsyncCalls.add(call);
          executorService().execute(call);
        } else {
          readyAsyncCalls.add(call);
        }
      }
    

    当正在运行的异步请求队列中的数量小于64并且正在运行的请求主机数小于5时则把请求加载到runningAsyncCalls中并在线程池中执行,否则就再入到readyAsyncCalls中进行缓存等待。

    AsyncCall

    线程池中传进来的参数就是AsyncCall它是RealCall的内部类,内部也实现了execute方法:

        @Override protected void execute() {
          boolean signalledCallback = false;
          try {
            Response response = getResponseWithInterceptorChain(forWebSocket);
            if (canceled) {
              signalledCallback = true;
              responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
            } else {
              signalledCallback = true;
              responseCallback.onResponse(RealCall.this, response);
            }
          } catch (IOException e) {
            if (signalledCallback) {
              // Do not signal the callback twice!
              logger.log(Level.INFO, "Callback failure for " + toLoggableString(), e);
            } else {
              responseCallback.onFailure(RealCall.this, e);
            }
          } finally {
            client.dispatcher().finished(this);
          }
        }
    

    首先我们来看看最后一行, 无论这个请求的结果如何都会执行client.dispatcher().finished(this);

     synchronized void finished(AsyncCall call) {
        if (!runningAsyncCalls.remove(call)) throw new AssertionError("AsyncCall wasn't running!");
        promoteCalls();
      }
    

    finished方法将此次请求从runningAsyncCalls移除后还执行了promoteCalls方法:

      private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
        if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
    
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
    
          if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
        }
      }
    

    可以看到最关键的点就是会从readyAsyncCalls取出下一个请求,并加入runningAsyncCalls中并交由线程池处理。好了让我们再回到上面的AsyncCall的execute方法,我们会发getResponseWithInterceptorChain方法返回了Response,很明显这是在请求网络。

    3.Interceptor拦截器

      private Response getResponseWithInterceptorChain(boolean forWebSocket) throws IOException {
        Interceptor.Chain chain = new ApplicationInterceptorChain(0, originalRequest, forWebSocket);
        return chain.proceed(originalRequest);
      }
    

    getResponseWithInterceptorChain方法,创建了ApplicationInterceptorChain,它是一个拦截器链,这个类也是RealCall的内部类,接下来执行了它的proceed方法:

        @Override public Response proceed(Request request) throws IOException {
          // If there's another interceptor in the chain, call that.
          if (index < client.interceptors().size()) {
            Interceptor.Chain chain = new ApplicationInterceptorChain(index + 1, request, forWebSocket);
            //从拦截器列表取出拦截器
            Interceptor interceptor = client.interceptors().get(index);
            Response interceptedResponse = interceptor.intercept(chain);
    
            if (interceptedResponse == null) {
              throw new NullPointerException("application interceptor " + interceptor
                  + " returned null");
            }
    
            return interceptedResponse;
          }
    
          // No more interceptors. Do HTTP.
          return getResponse(request, forWebSocket);
        }
    

    proceed方法每次从拦截器列表中取出拦截器,当存在多个拦截器时都会在第七行阻塞,并等待下一个拦截器的调用返回。下面分别以 拦截器链中有1个、2个拦截器的场景加以模拟:


    拦截器主要用来观察,修改以及可能短路的请求输出和响应的回来。通常情况下拦截器用来添加,移除或者转换请求或者响应的头部信息。比如将域名替换为ip地址,将请求头中添加host属性,也可以添加我们应用中的一些公共参数,比如设备id、版本号等等。 不了解拦截器的可以查看Okhttp-wiki 之 Interceptors 拦截器这篇文章。
    回到代码上来,我们看最后一行 return getResponse(request, forWebSocket),如果没有更多的拦截器的话,就会执行网络请求,来看看getResponse方法做了些什么(RealCall.java):

    Response getResponse(Request request, boolean forWebSocket) throws IOException {
     ...省略
        // Create the initial HTTP engine. Retries and redirects need new engine for each attempt.
        engine = new HttpEngine(client, request, false, false, forWebSocket, null, null, null);
    
        int followUpCount = 0;
        while (true) {
          if (canceled) {
            engine.releaseStreamAllocation();
            throw new IOException("Canceled");
          }
    
          boolean releaseConnection = true;
          try {
            engine.sendRequest();
            engine.readResponse();
            releaseConnection = false;
          } catch (RequestException e) {
            // The attempt to interpret the request failed. Give up.
            throw e.getCause();
          } catch (RouteException e) {
            // The attempt to connect via a route failed. The request will not have been sent.
      ...省略     
        }
      }
    

    getResponse方法比较长我省略了一些代码,可以看到创建了HttpEngine类并且调用HttpEngine的sendRequest方法和readResponse方法。

    4.缓存策略

    我们先来看看sendRequest方法:

     public void sendRequest() throws RequestException, RouteException, IOException {
        if (cacheStrategy != null) return; // Already sent.
        if (httpStream != null) throw new IllegalStateException();
        //请求头部添加
        Request request = networkRequest(userRequest);
        //获取client中的Cache,同时Cache在初始化的时候会去读取缓存目录中关于曾经请求过的所有信息。
        InternalCache responseCache = Internal.instance.internalCache(client);
        //cacheCandidate为上次与服务器交互缓存的Response
        Response cacheCandidate = responseCache != null
            ? responseCache.get(request)
            : null;
    
        long now = System.currentTimeMillis();
       
        //创建CacheStrategy.Factory对象,进行缓存配置
        cacheStrategy = new CacheStrategy.Factory(now, request, cacheCandidate).get();
        //网络请求
        networkRequest = cacheStrategy.networkRequest;
        //缓存的响应
        cacheResponse = cacheStrategy.cacheResponse;
    
        if (responseCache != null) {
         //记录当前请求是网络发起还是缓存发起
          responseCache.trackResponse(cacheStrategy);
        }
    
        if (cacheCandidate != null && cacheResponse == null) {
          closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
        }
    
        //不进行网络请求并且缓存不存在或者过期则返回504错误
        if (networkRequest == null && cacheResponse == null) {
          userResponse = new Response.Builder()
              .request(userRequest)
              .priorResponse(stripBody(priorResponse))
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(EMPTY_BODY)
              .build();
          return;
        }
        
        // 不进行网络请求,而且缓存可以使用,直接返回缓存
        if (networkRequest == null) {
          userResponse = cacheResponse.newBuilder()
              .request(userRequest)
              .priorResponse(stripBody(priorResponse))
              .cacheResponse(stripBody(cacheResponse))
              .build();
          userResponse = unzip(userResponse);
          return;
        }
    
        //需要访问网络时
        boolean success = false;
        try {
          httpStream = connect();
          httpStream.setHttpEngine(this);
    
          if (writeRequestHeadersEagerly()) {
            long contentLength = OkHeaders.contentLength(request);
            if (bufferRequestBody) {
              if (contentLength > Integer.MAX_VALUE) {
                throw new IllegalStateException("Use setFixedLengthStreamingMode() or "
                    + "setChunkedStreamingMode() for requests larger than 2 GiB.");
              }
    
              if (contentLength != -1) {
                // Buffer a request body of a known length.
                httpStream.writeRequestHeaders(networkRequest);
                requestBodyOut = new RetryableSink((int) contentLength);
              } else {
                // Buffer a request body of an unknown length. Don't write request headers until the
                // entire body is ready; otherwise we can't set the Content-Length header correctly.
                requestBodyOut = new RetryableSink();
              }
            } else {
              httpStream.writeRequestHeaders(networkRequest);
              requestBodyOut = httpStream.createRequestBody(networkRequest, contentLength);
            }
          }
          success = true;
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
          if (!success && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
      }
    

    上面的代码显然是在发送请求,但是最主要的是做了缓存的策略。cacheCandidate是上次与服务器交互缓存的Response,这里的缓存都是基于Map,key是请求中url的md5,value是在文件中查询到的缓存,页面置换基于LRU算法,我们现在只需要知道它是一个可以读取缓存Header的Response即可。根据cacheStrategy的处理得到了networkRequest和cacheResponse这两个值,根据这两个值的数据是否为null来进行进一步的处理,当networkRequest和cacheResponse都为null的情况也就是不进行网络请求并且缓存不存在或者过期,这时候则返回504错误;当networkRequest 为null时也就是不进行网络请求,而且缓存可以使用时则直接返回缓存;其他的情况则请求网络。
    接下来我们查看readResponse方法:

      public void readResponse() throws IOException {
        ...省略
        else{
          //读取网络响应
          networkResponse = readNetworkResponse();
        }
        //将响应头部存入Cookie中
        receiveHeaders(networkResponse.headers());
    
        // If we have a cache response too, then we're doing a conditional get.
        if (cacheResponse != null) {
        //检查缓存是否可用,如果可用。那么就用当前缓存的Response,关闭网络连接,释放连接。
          if (validate(cacheResponse, networkResponse)) {
            userResponse = cacheResponse.newBuilder()
                .request(userRequest)
                .priorResponse(stripBody(priorResponse))
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
            releaseStreamAllocation();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            InternalCache responseCache = Internal.instance.internalCache(client);
            responseCache.trackConditionalCacheHit();
            // 更新缓存
            responseCache.update(cacheResponse, stripBody(userResponse));
            userResponse = unzip(userResponse);
            return;
          } else {
            closeQuietly(cacheResponse.body());
          }
        }
    
        userResponse = networkResponse.newBuilder()
            .request(userRequest)
            .priorResponse(stripBody(priorResponse))
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (hasBody(userResponse)) {
          maybeCache();
          userResponse = unzip(cacheWritingResponse(storeRequest, userResponse));
        }
      }
    

    这个方法发起刷新请求头部和请求体,解析HTTP响应头部。如果有缓存并且可用则用缓存的数据并更新缓存,否则就用网络请求返回的数据。
    我们再来看看validate(cacheResponse, networkResponse)方法是如何判断缓存是否可用的:

      private static boolean validate(Response cached, Response network) {
      //如果服务器返回304则缓存有效
        if (network.code() == HTTP_NOT_MODIFIED) {
          return true;
        }
       //通过缓存和网络请求响应中的Last-Modified来计算是否是最新数据,如果是则缓存有效
        Date lastModified = cached.headers().getDate("Last-Modified");
        if (lastModified != null) {
          Date networkLastModified = network.headers().getDate("Last-Modified");
          if (networkLastModified != null
              && networkLastModified.getTime() < lastModified.getTime()) {
            return true;
          }
        }
        return false;
      }
    

    如缓存果过期或者强制放弃缓存,在此情况下,缓存策略全部交给服务器判断,客户端只用发送条件get请求即可,如果缓存是有效的,则返回304 Not Modifiled,否则直接返回body。条件get请求有两种方式一种是Last-Modified-Date,一种是 ETag。这里采用了Last-Modified-Date,通过缓存和网络请求响应中的Last-Modified来计算是否是最新数据,如果是则缓存有效。

    5.失败重连

    最后我们再回到RealCall的getResponse方法:

      Response getResponse(Request request, boolean forWebSocket) throws IOException {
      ...省略
          boolean releaseConnection = true;
          try {
            engine.sendRequest();
            engine.readResponse();
            releaseConnection = false;
          } catch (RequestException e) {
            // The attempt to interpret the request failed. Give up.
            throw e.getCause();
          } catch (RouteException e) {
            // The attempt to connect via a route failed. The request will not have been sent.
            HttpEngine retryEngine = engine.recover(e.getLastConnectException(), null);
            if (retryEngine != null) {
              releaseConnection = false;
              engine = retryEngine;
              continue;
            }
            // Give up; recovery is not possible.
            throw e.getLastConnectException();
          } catch (IOException e) {
            // An attempt to communicate with a server failed. The request may have been sent.
            HttpEngine retryEngine = engine.recover(e, null);
            if (retryEngine != null) {
              releaseConnection = false;
              engine = retryEngine;
              continue;
            }
    
            // Give up; recovery is not possible.
            throw e;
          } finally {
            // We're throwing an unchecked exception. Release any resources.
            if (releaseConnection) {
              StreamAllocation streamAllocation = engine.close();
              streamAllocation.release();
            }
          }
         ...省略
          engine = new HttpEngine(client, request, false, false, forWebSocket, streamAllocation, null,
              response);
        }
      }
    

    查看代码第11行和21行当发生IOException或者RouteException时会执行HttpEngine的recover方法:

      public HttpEngine recover(IOException e, Sink requestBodyOut) {
        if (!streamAllocation.recover(e, requestBodyOut)) {
          return null;
        }
    
        if (!client.retryOnConnectionFailure()) {
          return null;
        }
    
        StreamAllocation streamAllocation = close();
    
        // For failure recovery, use the same route selector with a new connection.
        return new HttpEngine(client, userRequest, bufferRequestBody, callerWritesRequestBody,
            forWebSocket, streamAllocation, (RetryableSink) requestBodyOut, priorResponse);
      }
    

    最后一行可以看到就是重新创建了HttpEngine并返回,用来完成重连。
    到这里OkHttp请求网络的流程基本上讲完了,下面是关于OKHttp的请求流程图:


    参考资料:
    http://www.jianshu.com/p/aad5aacd79bf
    http://www.jianshu.com/p/64e256c1dbbf
    http://www.cnblogs.com/LuLei1990/p/5534791.html
    http://frodoking.github.io/2015/03/12/android-okhttp/

    相关文章

      网友评论

      本文标题:Android网络编程(七)源码解析OkHttp前篇[请求网络]

      本文链接:https://www.haomeiwen.com/subject/jezqsttx.html