美文网首页
有参转录组实战10-差异基因KEGG富集分析

有参转录组实战10-差异基因KEGG富集分析

作者: 啊辉的科研 | 来源:发表于2024-05-09 22:25 被阅读0次

    ##########下面做KEGG########

    emapper <- read.delim("out.emapper.annotations")

    emapper[emapper=="-"] <- NA#change "-" to "NA"

    emapper <- emapper[-(49584:49586),]#remove the final 3 rows

    DE <- read.delim("DE_genes_filter.txt")

    pathway2gene <- dplyr::select(emapper,Pathway=KEGG_Pathway, GID=query)%>%

      separate_rows(Pathway, sep = ',', convert = F)%>%

      filter(str_detect(Pathway, 'ko'))%>%

      mutate(Pathway= str_remove(Pathway, 'ko'))

    pathway2gene <- pathway2gene%>%dplyr::mutate(Pathway=paste0("map",Pathway))#前面加"map"

    library(magrittr)

    get_path2name <- function(){

      keggpathid2name.df <- clusterProfiler:::kegg_list("pathway")

      keggpathid2name.df[,1] %>% gsub("path:map", "", .)

      colnames(keggpathid2name.df) <- c("path_id","path_name")

      return(keggpathid2name.df)

    }

    pathway2name <- get_path2name()

    #查看下变量pathway2gene和pathway2name

    ekp <- enricher(gene = DE$GID,

                    TERM2GENE = pathway2gene,

                    TERM2NAME = pathway2name,

                    pvalueCutoff = 0.05,

                    qvalueCutoff = 0.05)

    write.table(ekp, file = "Ptri_KEGG_test",sep = '\t',quote = F)

    #这里富集出来了,通路很少,可以自己调整P值和Q值的参数,或者在差异基因的筛选条件上放宽一点。Dsecription是对应https://rest.kegg.jp/list/pathway/#另外GeneRatio做成百分比

    ekp2 <- read.delim("Ptri_KEGG_test")

    library(ggplot2)

    pp <- ggplot(ekp2, aes(GeneRatio, Description))

    pp + geom_point() +

      geom_point(aes(size = Count)) +

      geom_point(aes(size = Count, color = -1 * log10(qvalue))) +

      scale_colour_gradient(low = "green", high = "red") +

      labs(color = expression(-log[10](Qvalue)), size = "Gene Number", x = "Rich Factor", y = "Pathway Name", title = "KEGG Pathway Enrichment") +

      theme_bw()

    #图片自己慢慢修,更多图表自行百度,可参考教程https://zhuanlan.zhihu.com/p/377356510

    #加个尾图

    #魔法少女小圆~

    相关文章

      网友评论

          本文标题:有参转录组实战10-差异基因KEGG富集分析

          本文链接:https://www.haomeiwen.com/subject/jjesfjtx.html