上一篇《小样本OLS回归的框架》讲解了小样本OLS回归的主要框架,本文沿着该框架,对小样本OLS回归做一个全面的梳理。
1 假设
这里先将所有的小样本OLS回归中可能用到的假设放到一起,方便浏览。当然,后面的每一个结论并不是要用到所有的假设,而是只用到某几个假设,这在后面讲每个结论时会具体说明。
- 假设1 线性性:,其中是未知参数向量,将所有个样本放到一起,可以写成,其中是矩阵;
- 假设2 严格外生性:;
- 假设3 非奇异性:是非奇异的;
- 假设4 球形扰动项:;
- 假设5 条件正态扰动项 ;
- 假设6 无近似多重共线性:当时,的最小特征值的概率为1。
其中,假设3等价于。假设6只在个别资料中会出现,它排除了近似多重共线性的可能。另外,假设4说明了扰动项没有自相关性并且是同方差的,假设5包含了假设4,假设5只在需要推导的抽样分布及其相关问题时需要用到。
2 的点估计及其性质
2.1 的点估计
通过求解,在假设3成立时很容易得到,这就是点估计。
我们将线性回归的残差记为。
在后续的推导中,主要用到的是点估计与真实的差,利用假设1,有。
2.2 的性质
首先,的条件期望就等于,即它是条件无偏的,利用假设4,可以得到。当然,在无条件下它也是无偏的。
它的条件方差很好计算,由定义和假设4,。若假设6也成立,则对于任何且满足的向量,有当时,。这意味着,只要不存在近似多重共线性,那么只要数据足够多,的方差就会趋近于0,反之,若出现了近似多重共线性,方差就很难靠收集数据来补救。
可以证明,在所有的线性无偏估计量中,具有最小的方差,这就是Gauss-Markov定理。它表明,对于任意一个其他的线性无偏估计量,必为半正定矩阵。
对于未知的参数,可以用残差的方差估计量来估计它。这也是一个无偏估计量,即。
3 的抽样分布及假设检验
3.1 的抽样分布
由于是小样本,因此对于扰动项分布的假设至关重要。光靠假设4是不够的,必须要用更强的假设5。
有了假设5,可以得出也服从条件正态分布:
对于任意的非随机矩阵,有
3.2 拟合优度
线性回归模型对数据的拟合情况怎样?可以用拟合优度来表达。下式为非中心化的表达式:
下式是中心化,又叫决定系数(Coefficient of Determination):
其实,就是和之间的相关系数平方:。
3.3 一些辅助结论和定理
定理1 正态随机变量的二次型 维随机向量,是的非随机对称幂等矩阵,,则。
定理2 维随机向量,其中是的对称、非奇异的协方差矩阵,则。
由定理1,可以得到。
另外,,并且和服从联合正态分布,这是因为
而由假设5,服从条件正态分布,因此上式是的线性组合,也服从以为条件的联合正态分布。而对于联合正态分布来说,不相关性等价于独立性,因此,和是独立的。
3.4 假设检验
3.4.1 检验
我们可以对如这样的零假设进行假设检验,其中为的矩阵。
若零假设成立,那么
由3.1节,我们可知
再利用定理2,可以得出
由于分布不依赖于,因此,上式的无条件分布也服从分布。
但问题在于是未知的,因此上式是无法计算的。解决办法是利用替代它,这样替代后,再稍作处理(除以),我们可以推导出一个不一样的分布,也就是统计量:
为何服从分布?可以从分子为分布除以、分母为分布除以、分子与分母中的变量与相互独立三个条件证明。
从另一个角度,记为无约束回归的残差,记为在约束下的回归的残差,那么统计量又可以写为
3.4.2 检验
当时,和变成了标量,不必再用二次型的形式构造出分布,而是可以直接构造正态分布形式:
只要再对上一节统计量的分母也相应求平方根,就可以得到统计量:
从而可进行检验。
网友评论