3位sar adc采用下图的电容阵列,需要23个电容,它的基本单元有二进制加权的电容阵列、1个与LSB电容等值的电容;它利用电容上的初始电荷再分配完成二进制搜索算法,因此功耗一般比较小,而且不需要额外的采样保持电路1。所有电容的正端(也称为上极板)与比较器的反相端连接,比较器同相端接gnd,下面对其工作过程进行大致分析
3bit_adc原理图.png参考电压,;,假设
分析过程:
step 0:采样阶段
3bit_adc采样阶段.png开关闭合,比较器反相端和同相端都接gnd,电容负端都接输入电压Vin
电容上存储的电荷量,与输入电压Vin成正比
step 0:保持阶段(可忽略这一阶段,认为直接进入电荷再分配阶段)
3bit_adc保持阶段.png将开关断开,所有电容的负端(也称为下极板)与gnd连接,根据电容的电荷量守恒,可得
所以比较器的反相端电压:
step 1:电荷再分配阶段(电压比较阶段)
3bit_adc_step1.png首先将开关断开,电容4C的负端接Vref
根据电容上的电荷量相等,可得
则
第1次:与两者进行比较,则比较器输出为高电平,即最高位D2=1
step 2:电荷再分配阶段(电压比较阶段)
3bit_adc_step2.png因为最高位D2=1,所以电容2C的负端接Vref;电容4C的负端保持接Vref
根据电容上的电荷量相等,可得
则
第2次:与两者进行比较,则比较器输出为低电平,即次高位D1=0
step 3:电荷再分配阶段(电压比较阶段)
3bit_adc_step3.png因为最高位D2=1且次高位D1=0,所以电容C的负端接Vref;电容2C的负端仍接gnd,电容4C的负端保持接Vref
根据电容上的电荷量相等,可得
则
第3次:与两者进行比较,则比较器输出为高电平,即最低位D0=1
所以3位sar adc输出数字码为D2D1D0=101
小结
- 输入电压Vin首先与进行比较,然后根据比较器输出结果(0或1)来选择下一个参考电压进行比较,当输出为1,则与进行比较;若输出为0,则与进行比较,。依次类推,比较器输出结果就可以等效地控制参考电压的改变。
- 当采样阶段结束后,断开开关,进入电荷再分配阶段,各个电容的负端(下极板)所接的电压值与比较器反相端电压的关系如下表,从表中可以看出大致规律。
C | C | 2C | 4C | |
---|---|---|---|---|
0 | 0 | 0 | 0 | |
0 | Vref | 0 | 0 | |
0 | 0 | Vref | 0 | |
0 | Vref | Vref | 0 | |
0 | 0 | 0 | Vref | |
0 | Vref | 0 | Vref | |
0 | 0 | Vref | Vref | |
0 | Vref | Vref | Vref |
- 本文的3位sar adc需要23=8个电容,而与之前的文章《一种4位sar adc工作过程推导》相比,4位sar adc同样也只需要8个电容,所以初步得出结论:这个sar adc电路结构与上篇文章相比,缺点是需要更多的电容组成二进制权重,优点是不需要提供的电压。
欢迎评论,一起交流!
参考文献
- [1] 逐次逼近型ADC
网友评论