美文网首页技术进阶贝塞尔曲线学习
自定义View进阶篇《六》——Path之贝塞尔曲线

自定义View进阶篇《六》——Path之贝塞尔曲线

作者: 吕侯爷 | 来源:发表于2017-04-10 19:39 被阅读164次

一、Path常用方法表

二.Path详解

上一次除了一些常用函数之外,讲解的基本上都是直线,本次需要了解其中的曲线部分,说到曲线,就不得不提大名鼎鼎的贝塞尔曲线。

贝塞尔曲线能干什么?

贝塞尔曲线的运用是十分广泛的,可以说贝塞尔曲线奠定了计算机绘图的基础(因为它可以将任何复杂的图形用精确的数学语言进行描述),在你不经意间就已经使用过它了。
你会使用Photoshop的话,你可能会注意到里面有一个钢笔工具,这个钢笔工具核心就是贝塞尔曲线。

你说你不会PS? 没关系,你如果看过前面的文章或者用过2D绘图,肯定绘制过圆,圆弧,圆角矩形等这些东西。这里面的圆弧部分全部都是贝塞尔曲线的运用。
贝塞尔曲线作用十分广泛,简单举几个的栗子:

  • QQ小红点拖拽效果
  • 一些炫酷的下拉刷新控件
  • 阅读软件的翻书效果
  • 一些平滑的折线图的制作
  • 很多炫酷的动画效果
第一步.理解贝塞尔曲线的原理

此处理解贝塞尔曲线并非是学会公式的推导过程(推倒(ノ*・ω・)ノ),而是要了解贝塞尔曲线是如何生成的。
贝塞尔曲线是用一系列点来控制曲线状态的,我将这些点简单分为两类:


一阶曲线原理:

一阶曲线是没有控制点的,仅有两个数据点(A 和 B),最终效果一个线段。



上图表示的是一阶曲线生成过程中的某一个阶段,动态过程可以参照下图(本文中贝塞尔曲线相关的动态演示图片来自维基百科)。


PS:一阶曲线其实就是前面讲解过的lineTo。

二阶曲线原理:

二阶曲线由两个数据点(A 和 C),一个控制点(B)来描述曲线状态,大致如下:



上图中红色曲线部分就是传说中的二阶贝塞尔曲线,那么这条红色曲线是如何生成的呢?接下来我们就以其中的一个状态分析一下:



连接AB BC,并在AB上取点D,BC上取点E,使其满足条件:

连接DE,取点F,使得:


这样获取到的点F就是贝塞尔曲线上的一个点,动态过程如下:


PS: 二阶曲线对应的方法是quadTo
Path path = new Path();
path.moveTo(start.x,start.y);
path.quadTo(control.x,control.y,end.x,end.y);
canvas.drawPath(path, mPaint);

三阶曲线原理:

三阶曲线由两个数据点(A 和 D),两个控制点(B 和 C)来描述曲线状态,如下:



三阶曲线计算过程与二阶类似,具体可以见下图动态效果:


PS: 三阶曲线对应的方法是cubicTo
Path path = new Path();
path.moveTo(start.x, start.y);
path.cubicTo(control1.x, control1.y, control2.x,control2.y, end.x, end.y);
canvas.drawPath(path, mPaint);

贝塞尔曲线速查表
强烈推荐点击这里练习贝塞尔曲线,可以加深对贝塞尔曲线的理解程度。

第二步.了解贝塞尔曲线相关函数使用方法
一阶曲线:

一阶曲线是一条线段,非常简单,可以参见上一篇文章Path之基本操作,此处就不详细讲解了。

二阶曲线:

通过上面对二阶曲线的简单了解,我们知道二阶曲线是由两个数据点,一个控制点构成,接下来我们就用一个实例来演示二阶曲线是如何运用的。
首先,两个数据点是控制贝塞尔曲线开始和结束的位置,比较容易理解,而控制点则是控制贝塞尔的弯曲状态,相对来说比较难以理解,所以本示例重点在于理解贝塞尔曲线弯曲状态与控制点的关系,废话不多说,先上效果图:


为了更加容易看出控制点与曲线弯曲程度的关系,上图中绘制出了辅助点和辅助线,从上面的动态图可以看出,贝塞尔曲线在动态变化过程中有类似于橡皮筋一样的弹性效果,因此在制作一些弹性效果的时候很常用。

public class Bezier extends View {

    private Paint mPaint;
    private int centerX, centerY;

    private PointF start, end, control;

    public Bessel1(Context context) {
        super(context);
        mPaint = new Paint();
        mPaint.setColor(Color.BLACK);
        mPaint.setStrokeWidth(8);
        mPaint.setStyle(Paint.Style.STROKE);
        mPaint.setTextSize(60);

        start = new PointF(0,0);
        end = new PointF(0,0);
        control = new PointF(0,0);
    }

    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w/2;
        centerY = h/2;

        // 初始化数据点和控制点的位置
        start.x = centerX-200;
        start.y = centerY;
        end.x = centerX+200;
        end.y = centerY;
        control.x = centerX;
        control.y = centerY-100;
    }

    @Override
    public boolean onTouchEvent(MotionEvent event) {
        // 根据触摸位置更新控制点,并提示重绘
        control.x = event.getX();
        control.y = event.getY();
        invalidate();
        return true;
    }

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);

        // 绘制数据点和控制点
        mPaint.setColor(Color.GRAY);
        mPaint.setStrokeWidth(20);
        canvas.drawPoint(start.x,start.y,mPaint);
        canvas.drawPoint(end.x,end.y,mPaint);
        canvas.drawPoint(control.x,control.y,mPaint);

        // 绘制辅助线
        mPaint.setStrokeWidth(4);
        canvas.drawLine(start.x,start.y,control.x,control.y,mPaint);
        canvas.drawLine(end.x,end.y,control.x,control.y,mPaint);

        // 绘制贝塞尔曲线
        mPaint.setColor(Color.RED);
        mPaint.setStrokeWidth(8);

        Path path = new Path();

        path.moveTo(start.x,start.y);
        path.quadTo(control.x,control.y,end.x,end.y);

        canvas.drawPath(path, mPaint);
    }
}
三阶曲线:

三阶曲线由两个数据点和两个控制点来控制曲线状态。


public class Bezier2 extends View {

    private Paint mPaint;
    private int centerX, centerY;

    private PointF start, end, control1, control2;
    private boolean mode = true;

    public Bezier2(Context context) {
        this(context, null);

    }

    public Bezier2(Context context, AttributeSet attrs) {
        super(context, attrs);

        mPaint = new Paint();
        mPaint.setColor(Color.BLACK);
        mPaint.setStrokeWidth(8);
        mPaint.setStyle(Paint.Style.STROKE);
        mPaint.setTextSize(60);

        start = new PointF(0, 0);
        end = new PointF(0, 0);
        control1 = new PointF(0, 0);
        control2 = new PointF(0, 0);
    }

    public void setMode(boolean mode) {
        this.mode = mode;
    }

    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w / 2;
        centerY = h / 2;

        // 初始化数据点和控制点的位置
        start.x = centerX - 200;
        start.y = centerY;
        end.x = centerX + 200;
        end.y = centerY;
        control1.x = centerX;
        control1.y = centerY - 100;
        control2.x = centerX;
        control2.y = centerY - 100;

    }

    @Override
    public boolean onTouchEvent(MotionEvent event) {
        // 根据触摸位置更新控制点,并提示重绘
        if (mode) {
            control1.x = event.getX();
            control1.y = event.getY();
        } else {
            control2.x = event.getX();
            control2.y = event.getY();
        }
        invalidate();
        return true;
    }

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);
        //drawCoordinateSystem(canvas);

        // 绘制数据点和控制点
        mPaint.setColor(Color.GRAY);
        mPaint.setStrokeWidth(20);
        canvas.drawPoint(start.x, start.y, mPaint);
        canvas.drawPoint(end.x, end.y, mPaint);
        canvas.drawPoint(control1.x, control1.y, mPaint);
        canvas.drawPoint(control2.x, control2.y, mPaint);

        // 绘制辅助线
        mPaint.setStrokeWidth(4);
        canvas.drawLine(start.x, start.y, control1.x, control1.y, mPaint);
        canvas.drawLine(control1.x, control1.y,control2.x, control2.y, mPaint);
        canvas.drawLine(control2.x, control2.y,end.x, end.y, mPaint);

        // 绘制贝塞尔曲线
        mPaint.setColor(Color.RED);
        mPaint.setStrokeWidth(8);

        Path path = new Path();

        path.moveTo(start.x, start.y);
        path.cubicTo(control1.x, control1.y, control2.x,control2.y, end.x, end.y);

        canvas.drawPath(path, mPaint);
    }
}

三阶曲线相比于二阶曲线可以制作更加复杂的形状,但是对于高阶的曲线,用低阶的曲线组合也可达到相同的效果,就是传说中的降阶。因此我们对贝塞尔曲线的封装方法一般最高只到三阶曲线。

降阶与升阶
第三步.贝塞尔曲线使用实例

在制作这个实例之前,首先要明确一个内容,就是在什么情况下需要使用贝塞尔曲线?



至于只需要一个静态的曲线图形的情况,用图片岂不是更好,大量的计算会很不划算。

如果是显示SVG矢量图的话,已经有相关的解析工具了(内部依旧运用的有贝塞尔曲线),不需要手动计算。
贝塞尔曲线的主要优点是可以实时控制曲线状态,并可以通过改变控制点的状态实时让曲线进行平滑的状态变化。
接下来我们就用一个简单的示例让一个圆渐变成为心形:



思路分析:

我们最终的需要的效果是将一个圆转变成一个心形,通过分析可知,圆可以由四段三阶贝塞尔曲线组合而成,如下:



心形也可以由四段的三阶的贝塞尔曲线组成,如下:



两者的差别仅仅在于数据点和控制点位置不同,因此只需要调整数据点和控制点的位置,就能将圆形变为心形。
核心难点:
1.如何得到数据点和控制点的位置?

关于使用绘制圆形的数据点与控制点早就已经有人详细的计算好了,可以参考stackoverflow的一个回答How to create circle with Bézier curves?其中的数据只需要拿来用即可。
而对于心形的数据点和控制点,可以由圆形的部分数据点和控制点平移后得到,具体参数可以自己慢慢调整到一个满意的效果。

2.如何达到渐变效果?

渐变其实就是每次对数据点和控制点稍微移动一点,然后重绘界面,在短时间多次的调整数据点与控制点,使其逐渐接近目标值,通过不断的重绘界面达到一种渐变的效果。过程可以参照下图动态效果:


public class Bezier3 extends View {
    private static final float C = 0.551915024494f;     // 一个常量,用来计算绘制圆形贝塞尔曲线控制点的位置

    private Paint mPaint;
    private int mCenterX, mCenterY;

    private PointF mCenter = new PointF(0,0);
    private float mCircleRadius = 200;                  // 圆的半径
    private float mDifference = mCircleRadius*C;        // 圆形的控制点与数据点的差值

    private float[] mData = new float[8];               // 顺时针记录绘制圆形的四个数据点
    private float[] mCtrl = new float[16];              // 顺时针记录绘制圆形的八个控制点

    private float mDuration = 1000;                     // 变化总时长
    private float mCurrent = 0;                         // 当前已进行时长
    private float mCount = 100;                         // 将时长总共划分多少份
    private float mPiece = mDuration/mCount;            // 每一份的时长


    public Bezier3(Context context) {
        this(context, null);

    }

    public Bezier3(Context context, AttributeSet attrs) {
        super(context, attrs);

        mPaint = new Paint();
        mPaint.setColor(Color.BLACK);
        mPaint.setStrokeWidth(8);
        mPaint.setStyle(Paint.Style.STROKE);
        mPaint.setTextSize(60);


        // 初始化数据点

        mData[0] = 0;
        mData[1] = mCircleRadius;

        mData[2] = mCircleRadius;
        mData[3] = 0;

        mData[4] = 0;
        mData[5] = -mCircleRadius;

        mData[6] = -mCircleRadius;
        mData[7] = 0;

        // 初始化控制点

        mCtrl[0]  = mData[0]+mDifference;
        mCtrl[1]  = mData[1];

        mCtrl[2]  = mData[2];
        mCtrl[3]  = mData[3]+mDifference;

        mCtrl[4]  = mData[2];
        mCtrl[5]  = mData[3]-mDifference;

        mCtrl[6]  = mData[4]+mDifference;
        mCtrl[7]  = mData[5];

        mCtrl[8]  = mData[4]-mDifference;
        mCtrl[9]  = mData[5];

        mCtrl[10] = mData[6];
        mCtrl[11] = mData[7]-mDifference;

        mCtrl[12] = mData[6];
        mCtrl[13] = mData[7]+mDifference;

        mCtrl[14] = mData[0]-mDifference;
        mCtrl[15] = mData[1];
    }


    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        mCenterX = w / 2;
        mCenterY = h / 2;
    }


    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);
         drawCoordinateSystem(canvas);       // 绘制坐标系

        canvas.translate(mCenterX, mCenterY); // 将坐标系移动到画布中央
        canvas.scale(1,-1);                 // 翻转Y轴

        drawAuxiliaryLine(canvas);


        // 绘制贝塞尔曲线
        mPaint.setColor(Color.RED);
        mPaint.setStrokeWidth(8);

        Path path = new Path();
        path.moveTo(mData[0],mData[1]);

        path.cubicTo(mCtrl[0],  mCtrl[1],  mCtrl[2],  mCtrl[3],     mData[2], mData[3]);
        path.cubicTo(mCtrl[4],  mCtrl[5],  mCtrl[6],  mCtrl[7],     mData[4], mData[5]);
        path.cubicTo(mCtrl[8],  mCtrl[9],  mCtrl[10], mCtrl[11],    mData[6], mData[7]);
        path.cubicTo(mCtrl[12], mCtrl[13], mCtrl[14], mCtrl[15],    mData[0], mData[1]);

        canvas.drawPath(path, mPaint);

        mCurrent += mPiece;
        if (mCurrent < mDuration){

            mData[1] -= 120/mCount;
            mCtrl[7] += 80/mCount;
            mCtrl[9] += 80/mCount;

            mCtrl[4] -= 20/mCount;
            mCtrl[10] += 20/mCount;

            postInvalidateDelayed((long) mPiece);
        }
    }

    // 绘制辅助线
    private void drawAuxiliaryLine(Canvas canvas) {
        // 绘制数据点和控制点
        mPaint.setColor(Color.GRAY);
        mPaint.setStrokeWidth(20);

        for (int i=0; i<8; i+=2){
            canvas.drawPoint(mData[i],mData[i+1], mPaint);
        }

        for (int i=0; i<16; i+=2){
            canvas.drawPoint(mCtrl[i], mCtrl[i+1], mPaint);
        }


        // 绘制辅助线
        mPaint.setStrokeWidth(4);

        for (int i=2, j=2; i<8; i+=2, j+=4){
            canvas.drawLine(mData[i],mData[i+1],mCtrl[j],mCtrl[j+1],mPaint);
            canvas.drawLine(mData[i],mData[i+1],mCtrl[j+2],mCtrl[j+3],mPaint);
        }
        canvas.drawLine(mData[0],mData[1],mCtrl[0],mCtrl[1],mPaint);
        canvas.drawLine(mData[0],mData[1],mCtrl[14],mCtrl[15],mPaint);
    }

    // 绘制坐标系
    private void drawCoordinateSystem(Canvas canvas) {
        canvas.save();                      // 绘制做坐标系

        canvas.translate(mCenterX, mCenterY); // 将坐标系移动到画布中央
        canvas.scale(1,-1);                 // 翻转Y轴

        Paint fuzhuPaint = new Paint();
        fuzhuPaint.setColor(Color.RED);
        fuzhuPaint.setStrokeWidth(5);
        fuzhuPaint.setStyle(Paint.Style.STROKE);

        canvas.drawLine(0, -2000, 0, 2000, fuzhuPaint);
        canvas.drawLine(-2000, 0, 2000, 0, fuzhuPaint);

        canvas.restore();
    }
}

三、总结

其实关于贝塞尔曲线最重要的是核心理解贝塞尔曲线的生成方式,只有理解了贝塞尔曲线的生成方式,才能更好的运用贝塞尔曲线。在上一篇末尾说本篇可能涉及一点图形渲染问题,不幸的是,本篇没有了,请期待下一篇(可能会在下一篇中出现o( ̄︶ ̄)o),下一篇依旧Path相关内容,教给大家一些更好玩的东西。
解锁新的境界之【绘制一个弹性的圆】

相关文章

网友评论

    本文标题:自定义View进阶篇《六》——Path之贝塞尔曲线

    本文链接:https://www.haomeiwen.com/subject/jpksattx.html