美文网首页
学习笔记DDD(其六)

学习笔记DDD(其六)

作者: 天鹰_2019 | 来源:发表于2020-05-12 17:05 被阅读0次

    天鹰(中南财大——博士研究生)
    E-mail: yanbinglh@163.com

    三重差分Stata操作(注意:此处仅仅作为三重差分的操作演示)
    • 【没有协变量】的三重差分法

    diff fte, t(treated) p(t) ddd(bk)

    diff fte, t(treated) p(t) ddd(bk) robust

    RIPLE DIFFERENCE (DDD) ESTIMATION RESULTS
    Notation of DDD:
     Control (A)     treated = 0 and bk = 1
     Control (B)     treated = 0 and bk = 0
     Treated (A)     treated = 1 and bk = 1
     Treated (B)     treated = 1 and bk = 0
    
    Number of observations in the DDD: 801
                 Before      After    
     Control (A):34          35          69
     Control (B):44          42          86
     Treated (A):133         132         265
     Treated (B):193         188         381
                 404         397
    --------------------------------------------------------
    Outcome var.   | fte     | S. Err. |   |t|   |  P>|t|
    ----------------+---------+---------+---------+---------
    Before          |         |         |         | 
     Control (A)  | 25.654  |         |         | 
     Control (B)  | 15.540  |         |         | 
     Treated (A)  | 18.547  |         |         | 
     Treated (B)  | 16.044  |         |         | 
     Diff (T-C)   | -7.612  | 2.728   | 2.79    | 0.005***
    After           |         |         |         | 
     Control (A)  | 22.193  |         |         | 
     Control (B)  | 13.667  |         |         | 
     Treated (A)  | 19.913  |         |         | 
     Treated (B)  | 15.930  |         |         | 
     Diff (T-C)   | -4.543  | 1.812   | 2.51    | 0.012**
                  |         |         |         | 
    DDD             | 3.069   | 3.275   | 0.94    | 0.349
    --------------------------------------------------------
    R-square:    0.09
    * Means and Standard Errors are estimated by linear regression
    **Robust Std. Errors
    **Inference: *** p<0.01; ** p<0.05; * p<0.1
    
    
    

    esti stor DDD1

    • 【有协变量】的三重差分法

    diff fte, t(treated) p(t) ddd(bk) cov(roys wendys)

    diff fte, t(treated) p(t) ddd(bk) cov(roys wendys) robust

    
    TRIPLE DIFFERENCE (DDD) ESTIMATION RESULTS
    Notation of DDD:
      Control (A)     treated = 0 and bk = 1
      Control (B)     treated = 0 and bk = 0
      Treated (A)     treated = 1 and bk = 1
      Treated (B)     treated = 1 and bk = 0
    
    Number of observations in the DDD: 801
                  Before      After    
      Control (A):34          35          69
      Control (B):44          42          86
      Treated (A):133         132         265
      Treated (B):193         188         381
                  404         397
    --------------------------------------------------------
    Outcome var.   | fte     | S. Err. |   |t|   |  P>|t|
    ----------------+---------+---------+---------+---------
    Before          |         |         |         | 
      Control (A)  | 25.654  |         |         | 
      Control (B)  | 9.063   |         |         | 
      Treated (A)  | 18.547  |         |         | 
      Treated (B)  | 10.367  |         |         | 
      Diff (T-C)   | -8.411  | 2.612   | 3.22    | 0.001***
    After           |         |         |         | 
      Control (A)  | 22.193  |         |         | 
      Control (B)  | 7.334   |         |         | 
      Treated (A)  | 19.913  |         |         | 
      Treated (B)  | 10.331  |         |         | 
      Diff (T-C)   | -5.276  | 1.759   | 3.00    | 0.003***
                   |         |         |         | 
    DDD             | 3.135   | 3.145   | 1.00    | 0.319
    --------------------------------------------------------
    R-square:    0.21
    * Means and Standard Errors are estimated by linear regression
    **Robust Std. Errors
    **Inference: *** p<0.01; ** p<0.05; * p<0.1
    
    

    esti stor DDDCOV1

    diff fte, t(treated) p(t) ddd(bk) cov(roys wendys) ///
    robust report

    report报告协变量的估计值

    对于协变量添加到回归模型中的问题,如果协变量显著,同时有助于提升R^2,则可以考虑添加。
    • 用【OLS】估计【有协变量】的【三重差分】估计量
     reg fte bk treated c.bk#c.treated t c.t#c.bk c.t#c.treated 
               c.t#c.bk#c.treated  roys wendys, robust
          
    
    Linear regression                               Number of obs     =        801
                                                    F(9, 791)         =      40.66
                                                    Prob > F          =     0.0000
                                                    R-squared         =     0.2115
                                                    Root MSE          =     8.0571
    
    ------------------------------------------------------------------------------------
                       |               Robust
                   fte |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------------+----------------------------------------------------------------
                    bk |   16.59097   2.477767     6.70   0.000     11.72719    21.45475
               treated |   1.303991   1.077859     1.21   0.227    -.8118111    3.419793
                       |
        c.bk#c.treated |   -8.41141   2.611581    -3.22   0.001    -13.53786   -3.284962
                       |
                     t |  -1.729012   1.267552    -1.36   0.173    -4.217176    .7591522
                       |
              c.t#c.bk |  -1.732542   2.877795    -0.60   0.547    -7.381562    3.916477
                       |
         c.t#c.treated |   1.692315   1.513675     1.12   0.264    -1.278979     4.66361
                       |
    c.t#c.bk#c.treated |   3.135126   3.144552     1.00   0.319    -3.037528    9.307779
                       |
                  roys |   8.377883    .756411    11.08   0.000     6.893072    9.862693
                wendys |   9.502303   .9042629    10.51   0.000     7.727264    11.27734
                 _cons |   9.063442   .9598355     9.44   0.000     7.179316    10.94757
    ------------------------------------------------------------------------------------
    
    

    esti stor DDDCOVOLS1

    esttab DDDCOV1 DDDCOVOLS1 using testldddcovols1.doc, ar2(%8.4f) se(%8.4f)   nogap brackets aic bic  mtitles replace    
    
    
    -----------------------------------------
                         (1)             (2)   
                     DDDCOV1      DDDCOVOLS1   
    --------------------------------------------
    t                  -1.729          -1.729   
                    [1.2676]        [1.2676]   
    treated             1.304           1.304   
                    [1.0779]        [1.0779]   
    bk                  16.59***        16.59***
                    [2.4778]        [2.4778]   
    __000002           -8.411**                 
                    [2.6116]                   
    __000003            1.692                   
                    [1.5137]                   
    __000004           -1.733                   
                    [2.8778]                   
    _diff               3.135                   
                    [3.1446]                   
    roys                8.378***        8.378***
                    [0.7564]        [0.7564]   
    wendys              9.502***        9.502***
                    [0.9043]        [0.9043]   
    c.bk#c.tre~d                       -8.411** 
                                    [2.6116]   
    c.t#c.bk                           -1.733   
                                    [2.8778]   
    c.t#c.trea~d                        1.692   
                                    [1.5137]   
    c.t#c.bk#c~d                        3.135   
                                    [3.1446]   
    _cons               9.063***        9.063***
                    [0.9598]        [0.9598]   
    --------------------------------------------
    N                     801             801   
    adj. R-sq          0.2026          0.2026   
    AIC                5625.7          5625.7   
    BIC                5672.6          5672.6   
    --------------------------------------------
    Standard errors in brackets
    * p<0.05, ** p<0.01, *** p<0.001
    

    相关文章

      网友评论

          本文标题:学习笔记DDD(其六)

          本文链接:https://www.haomeiwen.com/subject/jqfinhtx.html