美文网首页视觉艺术
python可视化利器:pyecharts

python可视化利器:pyecharts

作者: TOMOCAT | 来源:发表于2020-05-11 01:26 被阅读0次

    前言

    前面我们提及ggplotRPython中都是数据可视化的利器,在机器学习和数据分析领域得到了广泛的应用。pyecharts结合了Python和百度开源的Echarts工具,基于其交互性和便利性得到了众多开发者的认可。拥有如下的特点:

    • 可集成至FlaskDjango等主流web框架
    • 相较于matplotlib等传统绘图库,pyecharts语法更加简洁,更加注重数据的呈现方式而非图形细节
    • 包含原生的百度地图,方便绘制地理可视化图形

    本文主要整理自pyecharts官网github文档:https://github.com/pyecharts/pyecharts/

    安装

    # pip安装
    $ pip(3) install pyecharts
    
    # 源码安装
    $ git clone https://github.com/pyecharts/pyecharts.git
    $ cd pyecharts
    $ pip install -r requirements.txt
    $ python setup.py install
    # 或者执行 python install.py
    

    简单的实例

    首先绘制第一个图表:

    from pyecharts.charts import Bar
    
    bar = Bar()
    bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
    # render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
    # 也可以传入路径参数,如 bar.render("mycharts.html")
    bar.render()
    
    # pyechart所有方法均支持链式调用, 因此上面的代码也可以改写成如下形式
    from pyecharts.charts import Bar
    
    bar = (
        Bar()
        .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
        .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
    )
    bar.render()
    
    # 使用options配置项添加主标题和副标题
    from pyecharts.charts import Bar
    from pyecharts import options as opts
    
    bar = Bar()
    bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
    bar.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
    bar.render()
    
    
    image.png

    基本图表

    1. 柱状图

    from pyecharts import options as opts
    from pyecharts.charts import Bar
    from pyecharts.commons.utils import JsCode
    from pyecharts.globals import ThemeType
    
    list2 = [
        {"value": 12, "percent": 12 / (12 + 3)},
        {"value": 23, "percent": 23 / (23 + 21)},
        {"value": 33, "percent": 33 / (33 + 5)},
        {"value": 3, "percent": 3 / (3 + 52)},
        {"value": 33, "percent": 33 / (33 + 43)},
    ]
    
    list3 = [
        {"value": 3, "percent": 3 / (12 + 3)},
        {"value": 21, "percent": 21 / (23 + 21)},
        {"value": 5, "percent": 5 / (33 + 5)},
        {"value": 52, "percent": 52 / (3 + 52)},
        {"value": 43, "percent": 43 / (33 + 43)},
    ]
    
    c = (
        # 设置主题: 默认是黑红风格, 其他风格大部分还不如黑红风格好看
        Bar(init_opts=opts.InitOpts())
        # 新增x轴数据, 这里有五列柱状图
        .add_xaxis(
            [
                "名字很长的X轴标签1",
                "名字很长的X轴标签2",
                "名字很长的X轴标签3",
                "名字很长的X轴标签4",
                "名字很长的X轴标签5",
            ]
        )
        # 参数一: 系列名称; 参数二: 系列数据; stack: 数据堆叠; category_gap: 柱间距离
        .add_yaxis("product1", list2, stack="stack1", category_gap="50%")
        .add_yaxis("product2", list3, stack="stack1", category_gap="50%")
        # set_series_opts系列配置项,可配置图元样式、文字样式、标签样式、点线样式等; 其中opts.LabelOpts指标签配置项
        .set_series_opts(
            label_opts=opts.LabelOpts(
                position="right",   # 数据标签的位置
                formatter=JsCode(   # 标签内容的格式器, 这里展示了百分比
                    "function(x){return Number(x.data.percent * 100).toFixed() + '%';}"
                ),
            )
        )
        # set_global_opts全局配置项
        .set_global_opts(
            # 旋转坐标轴: 解决坐标轴名字过长的问题
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            title_opts=opts.TitleOpts(title="Bar-柱状图展示", subtitle="Bar-副标题"),
        )
        .render("stack_bar_percent.html")
    )
    
    image.png

    2. 特效散点图

    from pyecharts import options as opts
    from pyecharts.charts import EffectScatter
    from pyecharts.faker import Faker
    from pyecharts.globals import SymbolType
    
    c = (
        # 特效散点图
        EffectScatter()
        # Faker返回假数据
        .add_xaxis(Faker.choose())
        # symbol=SymbolType.ARROW修改特效类型: 这里指箭头特效
        .add_yaxis("", Faker.values(), symbol=SymbolType.ARROW)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="EffectScatter-显示分割线"),
            # 显示横纵轴分割线
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
        )
        .render("effectscatter_splitline.html")
    )
    
    image.png

    3. 漏斗图

    研发岗涉及业务分析时经常需要绘制漏斗图,用pyecharts可以一键生成

    
    data = [[x_data[i], y_data[i]] for i in range(len(x_data))]
    
    (
        # InitOpts初始化配置项: 配置画布长宽
        Funnel(init_opts=opts.InitOpts(width="800px", height="500px"))
        .add(
            series_name="网页访问数据",
            data_pair=data,
            # gap: 数据图形间距, 默认0
            gap=2,
            # tooltip_opts: 鼠标提示框组件配置项, a: series_name, b: x_data, c: y_data
            tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}%"),
            # label_opts: 标签配置项, inside指标签在图层内部
            label_opts=opts.LabelOpts(is_show=True, position="inside"),
            # 图元样式配置项
            itemstyle_opts=opts.ItemStyleOpts(border_color="#fff", border_width=1),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="漏斗图", subtitle="纯属虚构"))
        .render("funnel_chart.html")
    )
    
    image.png

    4. 关系图

    from pyecharts import options as opts
    from pyecharts.charts import Graph
    
    # 构造数据: nodes表示节点信息和对应的节点大小; links表示节点之间的关系
    nodes = [
        {"name": "结点1", "symbolSize": 10},
        {"name": "结点2", "symbolSize": 20},
        {"name": "结点3", "symbolSize": 30},
        {"name": "结点4", "symbolSize": 40},
        {"name": "结点5", "symbolSize": 50},
        {"name": "结点6", "symbolSize": 40},
        {"name": "结点7", "symbolSize": 30},
        {"name": "结点8", "symbolSize": 20},
    ]
    links = []
    # fake节点之间的两两双向关系
    for i in nodes:
        for j in nodes:
            links.append({"source": i.get("name"), "target": j.get("name")})
    c = (
        Graph()
        # repulsion: 节点之间的斥力因子, 值越大表示节点之间的斥力越大
        .add("", nodes, links, repulsion=8000)
        .set_global_opts(title_opts=opts.TitleOpts(title="Graph-基本示例"))
        .render("graph_base.html")
    )
    
    image.png

    数据分析中常见的微博转发图也是通过关系图转化来的:


    image.png

    5. 组合组件Grid

    最常用的是组合直方图和折点图。

    from pyecharts import options as opts
    from pyecharts.charts import Bar, Grid, Line
    from pyecharts.faker import Faker
    
    bar = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .add_yaxis("商家B", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Grid-Bar"))
    )
    line = (
        Line()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .add_yaxis("商家B", Faker.values())
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"),
            legend_opts=opts.LegendOpts(pos_top="48%"),
        )
    )
    
    grid = (
        Grid()
        # GridOpts: 直角坐标系网格配置项
        # pos_bottom: grid组件离容器底部的距离
        # pos_top: grid组件离容器顶部的距离
        .add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
        .add(line, grid_opts=opts.GridOpts(pos_top="60%"))
        .render("grid_vertical.html")
    )
    
    
    image.png

    6. 折线图

    import pyecharts.options as opts
    from pyecharts.charts import Line
    from pyecharts.faker import Faker
    
    c = (
        Line()
        # Faker: 获取伪造数据集
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .add_yaxis("商家B", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
        .render("line_base.html")
    )
    
    image.png

    7. 地图

    from pyecharts import options as opts
    from pyecharts.charts import Map
    from pyecharts.faker import Faker
    
    c = (
        Map()
        # Faker: 伪造数据集, 包括国家和对应的value
        .add("商家A", [list(z) for z in zip(Faker.country, Faker.values())], "world")
        # 显示label
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Map-世界地图"),
            # VisualMapOpts: 视觉映射配置项, 指定组件的最大值
            visualmap_opts=opts.VisualMapOpts(max_=200),
        )
        .render("map_world.html")
    )
    
    image.png

    8. 层叠组件

    from pyecharts import options as opts
    from pyecharts.charts import Bar, Line
    from pyecharts.faker import Faker
    
    v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
    v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
    v3 = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]
    
    
    bar = (
        Bar()
        .add_xaxis(Faker.months)
        .add_yaxis("蒸发量", v1)
        .add_yaxis("降水量", v2)
        .extend_axis(
            # 新增y坐标轴配置项: 因为有三个纵轴数据, 包括蒸发量/降水量(单位是ml), 平均温度(单位是°C)
            yaxis=opts.AxisOpts(
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"), interval=5
            )
        )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Overlap-bar+line"),
            # 设置y坐标轴配置项
            yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} ml")),
        )
    )
    
    # 新增折线图
    line = Line().add_xaxis(Faker.months).add_yaxis("平均温度", v3, yaxis_index=1)
    # 使用层叠组件组合图形
    bar.overlap(line)
    bar.render("overlap_bar_line.html")
    
    image.png

    9. 饼状图

    from pyecharts import options as opts
    from pyecharts.charts import Pie
    from pyecharts.faker import Faker
    
    c = (
        Pie()
        .add(
            "",
            # 设置数据集
            [list(z) for z in zip(Faker.choose(), Faker.values())],
            radius=["40%", "55%"],
            # 设置标签配置项
            label_opts=opts.LabelOpts(
                # 标签位置
                position="outside",
                # 标签内容格式器: {a}(系列名称),{b}(数据项名称),{c}(数值), {d}(百分比)
                formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",
                # 文字块背景色
                background_color="#eee",
                # 文字块边框颜色
                border_color="#aaa",
                border_width=1,
                border_radius=4,
                # 在 rich 里面,可以自定义富文本样式。利用富文本样式,可以在标签中做出非常丰富的效果
                rich={
                    "a": {"color": "#999", "lineHeight": 22, "align": "center"},
                    "abg": {
                        "backgroundColor": "#e3e3e3",
                        "width": "100%",
                        "align": "right",
                        "height": 22,
                        "borderRadius": [4, 4, 0, 0],
                    },
                    "hr": {
                        "borderColor": "#aaa",
                        "width": "100%",
                        "borderWidth": 0.5,
                        "height": 0,
                    },
                    "b": {"fontSize": 16, "lineHeight": 33},
                    "per": {
                        "color": "#eee",
                        "backgroundColor": "#334455",
                        "padding": [2, 4],
                        "borderRadius": 2,
                    },
                },
            ),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="Pie-富文本示例"))
        .render("pie_rich_label.html")
    )
    

    10. 雷达图

    import pyecharts.options as opts
    from pyecharts.charts import Radar
    
    """
    Gallery 使用 pyecharts 1.1.0
    参考地址: https://echarts.baidu.com/examples/editor.html?c=radar
    
    目前无法实现的功能:
    
    1、雷达图周围的图例的 textStyle 暂时无法设置背景颜色
    """
    v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
    v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
    
    (
        Radar(init_opts=opts.InitOpts(width="1280px", height="720px", bg_color="#CCCCCC"))
        .add_schema(
            schema=[
                opts.RadarIndicatorItem(name="销售(sales)", max_=6500),
                opts.RadarIndicatorItem(name="管理(Administration)", max_=16000),
                opts.RadarIndicatorItem(name="信息技术(Information Technology)", max_=30000),
                opts.RadarIndicatorItem(name="客服(Customer Support)", max_=38000),
                opts.RadarIndicatorItem(name="研发(Development)", max_=52000),
                opts.RadarIndicatorItem(name="市场(Marketing)", max_=25000),
            ],
            splitarea_opt=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
            textstyle_opts=opts.TextStyleOpts(color="#fff"),
        )
        .add(
            series_name="预算分配(Allocated Budget)",
            data=v1,
            linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
        )
        .add(
            series_name="实际开销(Actual Spending)",
            data=v2,
            linestyle_opts=opts.LineStyleOpts(color="#5CACEE"),
        )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="基础雷达图"), legend_opts=opts.LegendOpts()
        )
        .render("basic_radar_chart.html")
    )
    
    image.png

    11. 普通散点图

    from pyecharts import options as opts
    from pyecharts.charts import Scatter
    from pyecharts.faker import Faker
    
    c = (
        Scatter()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Scatter-显示分割线"),
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
        )
        .render("scatter_splitline.html")
    )
    
    image.png

    其他图形

    其他的图形示例可以在官方文档中查询:http://gallery.pyecharts.org/

    其他文章

    1. 机器学习必知必会与算法原理

    机器学习导论:什么是机器学习
    机器学习必知必会:凸优化
    深入浅出机器学习算法:XGBoost
    机器学习必知必会:梯度下降法

    2. 数据分析和爬虫案例

    Python数据分析:谁是2018当之无愧的“第一”国产电影
    如何用python爬虫实现简单PV刷量——以CSDN为例
    python脚本从零到一构建自己的免费代理IP池
    [R]数据可视化的最佳解决方案:ggplot

    3. 相关经验

    秋招面试:零基础拿到腾讯数据岗offer需要做哪些努力
    股票市场中如何用数据思维跑赢九成的投资者
    精算师证有多难考,怎么准备?

    Reference

    [1] http://pyecharts.org/#/zh-cn/intro
    [2] http://pyecharts.herokuapp.com/bar
    [3] http://gallery.pyecharts.org/

    相关文章

      网友评论

        本文标题:python可视化利器:pyecharts

        本文链接:https://www.haomeiwen.com/subject/jsgenhtx.html