美文网首页OpenCvIT@程序员猿媛图像处理
【图像处理】OpenCV系列十 --- 边缘检测之Sobel算子

【图像处理】OpenCV系列十 --- 边缘检测之Sobel算子

作者: 307656af5a04 | 来源:发表于2019-04-24 18:43 被阅读6次

上一篇我们学习了边缘检测的Canny算子,通过上一篇的学习我们对边缘检测的概念已经有了一个清晰的理解,那么本篇我们就来继续学习边缘检测的Sobel算子。

一、理论

Sobel 算子是一个主要用作边缘检测的离散微分算子 (discrete differentiation operator)。 Sobel算子结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。

Sobel卷积因子为:

Sobel的卷积因子

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

x方向和y方向求导

具体的计算如下:

Gx与Gy的推导

其中f(a,b), 表示图像(a,b)点的灰度值;
图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

通常,为了提高效率 使用不开平方的近似值:

如果梯度G大于某一阀值,则认为该点(x,y)为边缘点。

然后可用以下公式计算梯度方向:

梯度方向

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

二、OpenCV中的API函数详解

1、函数原型:

void Sobel(InputArray src, 
    OutputArray dst, 
    int ddepth,
    int dx, 
    int dy, 
    int ksize = 3,
    double scale = 1, 
    double delta = 0,
    int borderType = 
    BORDER_DEFAULT);

2、函数功能:

Sobel函数使用扩展的 Sobel 算子,来计算一阶、二阶、三阶或混合图像差分。

3、参数详解:

  • 第一个参数,InputArray 类型的src,为输入图像,填Mat类型即可;

  • 第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,需要和源图- 片有一样的尺寸和类型;

  • 第三个参数,int类型的ddepth,输出图像的深度,支持如下src.depth()和ddepth的组合:

    • 若src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F
    • 若src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
    • 若src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
    • 若src.depth() = CV_64F, 取ddepth = -1/CV_64F
  • 第四个参数,int类型dx,x 方向上的差分阶数;

  • 第五个参数,int类型dy,y方向上的差分阶数;

  • 第六个参数,int类型ksize,有默认值3,表示Sobel核的大小; 必须取1,3,5或7;

  • 第七个参数,double类型的scale,计算导数值时可选的缩放因子,默认值是1,表示默认情况下是没有应用缩放的。我们可以在文档中查阅getDerivKernels的相关介绍,来得到这个参数的更多信息;

  • 第八个参数,double类型的delta,表示在结果存入目标图(第二个参数dst)之前可选的delta值,有默认值0;

  • 第九个参数, int类型的borderType,我们的老朋友了(万年是最后一个参数),边界模式,默认值为BORDER_DEFAULT。

4、实例

#include <opencv2/opencv.hpp>

using namespace cv;

int main()
{
    //创建 grad_x 和 grad_y 矩阵
    Mat grad_x, grad_y;
    Mat abs_grad_x, abs_grad_y, dst;

    //载入原始图  
    Mat src = imread("lena.png");

    //显示原始图 
    imshow("【原始图】sobel边缘检测", 
        src);

    //求 X方向梯度
    Sobel(src, grad_x, CV_16S, 1, 
        0, 3, 1, 1, BORDER_DEFAULT);

    convertScaleAbs(grad_x, 
        abs_grad_x);

    imshow("【效果图】 X方向Sobel",
        abs_grad_x);

    //求Y方向梯度
    Sobel(src, grad_y, CV_16S, 0, 
        1, 3, 1, 1, BORDER_DEFAULT);

    convertScaleAbs(grad_y,
        abs_grad_y);

    imshow("【效果图】Y方向Sobel", 
        abs_grad_y);

    //合并梯度(近似)
    addWeighted(abs_grad_x, 0.5, 
        abs_grad_y, 0.5, 0, dst);

    imshow("【效果图】整体方向Sobel", dst);

    waitKey(0);
    return 0;
}

实验结果:

原图 效果图

好了,今天的OpenCV知识点之Sobel学到这里就结束了,喜欢的朋友可以给我点个赞!!

相关文章

网友评论

    本文标题:【图像处理】OpenCV系列十 --- 边缘检测之Sobel算子

    本文链接:https://www.haomeiwen.com/subject/jyhigqtx.html