三大富集分析,画图
1.调包,有没有用都调
rm(list=ls())
path = "your path"
setwd(path)
library(GEOquery)
library(stringr)
library(dplyr)
library(limma)
library(reshape2)
library(ggplot2)
library(ggrepel)
library(WGCNA)
library(ggpubr)
library(patchwork)
library(clusterProfiler)
library(org.Hs.eg.db)
select <- dplyr::select
gse_id <- "your gse"
Sys.setenv("VROOM_CONNECTION_SIZE"=131072*6)
2.id转换
x <- module_brown
gene_id <- bitr(x, #数据集,genesymbol 构成的向量
fromType="SYMBOL", #输入为SYMBOL格式
toType="ENTREZID", # 转为ENTERZID格式
OrgDb="org.Hs.eg.db") #人类 数据库
3.分析,需要网络
# gene就是差异基因对应的向量,keyType指定基因ID的类型,默认为ENTREZID, 该参数的取值可以参 keytypes(org.Hs.eg.db)的结果,
# 建议采用ENTREZID, OrgDb指定该物种对应的org包的名字,ont代表GO的3大类别,BP, CC, MF,也可以选择ALL;
# pAdjustMethod指定多重假设检验矫正的方法,这里默认pAdjustMethod="BH",所以这里没有写出来,
# cutoff指定对应的阈值,
# readable=TRUE代表将基因ID转换为gene symbol。
GO<-enrichGO(gene=gene_id$ENTREZID,OrgDb = "org.Hs.eg.db",
keyType = "ENTREZID",
ont="ALL",
qvalueCutoff = 0.05,
readable = T)
4.画图前整理数据
go<-as.data.frame(GO)
#View(go)
table(go[,1]) #查看BP,CC,MF的统计数目
go_MF<-go[go$ONTOLOGY=="MF",][1:10,]
go_CC<-go[go$ONTOLOGY=="CC",][1:10,]
go_BP<-go[go$ONTOLOGY=="BP",][1:10,]
go_enrich_df<-data.frame(ID=c(go_BP$ID, go_CC$ID, go_MF$ID),
Description=c(go_BP$Description, go_CC$Description, go_MF$Description),
GeneNumber=c(go_BP$Count, go_CC$Count, go_MF$Count),
type=factor(c(rep("biological process", 10),
rep("cellular component", 10),
rep("molecular function",10)),
levels=c("molecular function", "cellular component", "biological process")))
## numbers as data on x axis
go_enrich_df$number <- factor(rev(1:nrow(go_enrich_df)))
5.定义一个函数,对过长的术语名称缩短显示
## shorten the names of GO terms
shorten_names <- function(x, n_word=4, n_char=40){
if (length(strsplit(x, " ")[[1]]) > n_word || (nchar(x) > 40))
{
if (nchar(x) > 40) x <- substr(x, 1, 40)
x <- paste(paste(strsplit(x, " ")[[1]][1:min(length(strsplit(x," ")[[1]]), n_word)],
collapse=" "), "...", sep="")
return(x)
}
else
{
return(x)
}
}
labels = sapply(go_enrich_df$Description,shorten_names)
names(labels) = rev(1:nrow(go_enrich_df))
6.绘制富集分析图
## colors for bar // green, blue, orange
CPCOLS <- c("#8DA1CB", "#FD8D62", "#66C3A5")
p_go_greenyellow <- ggplot(data=go_enrich_df, aes(x=number, y=GeneNumber, fill=type)) +
geom_bar(stat="identity", width=0.8) + coord_flip() +
scale_fill_manual(values = CPCOLS) + theme_test() +
scale_x_discrete(labels=labels) +
xlab("GO term") +
labs(title = "The Most Enriched GO Terms in Greenyellow Module")+
theme(text=element_text(size = 8)) +
theme(legend.box = "",
legend.position = "top",legend.key.size = unit(0.3,"cm"),
legend.text = element_text(size = 8),
legend.box.spacing = unit(2,"mm"))
#coord_flip(...)横向转换坐标:把x轴和y轴互换,没有特殊参数
p_go_greenyellow
ggsave(p_go_greenyellow,filename = ".\\plots\\p_go_brown.pdf",width = 9,height = 10,units = c("cm"))
7.kegg分析,需要网络
KEGG<-enrichKEGG(gene_id$ENTREZID,#KEGG富集分析
organism = 'hsa',
pvalueCutoff = 0.05,
qvalueCutoff = 0.05)
8.绘制kegg气泡图
labels = sapply(df_kegg$Description,shorten_names)
names(labels) = rev(1:nrow(df_kegg))
kegg_greenyellow <- ggplot(df_kegg[1:15,],aes(x = pvalue,y = Description))+
geom_point(aes(size = Count,color = -1*log10(qvalue)))+
scale_color_gradient(low = "green",high = "red")+
labs(color = expression(-log[10](qvalue)),size = "gene",x = "pvalue",y = "pathway name",title = "pathway enrichment")+
theme_bw()+
scale_y_discrete(labels=function(x)str_wrap(x,width = 40))+
theme(text=element_text(size = 8),
legend.box.spacing = unit(1,"mm"),
legend.position = "right",legend.key.width = unit(0.2,"cm"),legend.key.height = unit(0.3,"cm"),
legend.text = element_text(size = 8))
kegg_greenyellow
ggsave(kegg_greenyellow,filename = ".\\plots\\kegg_greenyellow.pdf",width = 10,height = 10,units = c("cm"))
9.其他画法,不用ggplot2,直接画也行
barplot(GO, split="ONTOLOGY")+facet_grid(ONTOLOGY~., scale="free")#柱状图
#点状图
dotplot(GO, split="ONTOLOGY")+
facet_grid(ONTOLOGY~., scale="free")+
theme(text = element_text(size = 8),strip.background = element_blank())
网友评论