MNIST数据集input_data代码下载

作者: Andy9918 | 来源:发表于2019-06-13 12:08 被阅读3次

    TensorFlow官方指导文档第一篇,就是以MNIST数据集为例,其中第一个导入的包input_data下载地址已经失效,到这里下载吧,或者直接拷贝以下代码也可以:
    链接:https://pan.baidu.com/s/1KPZEHtVveMGK7UvLRHfdKA
    提取码:kfsy

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Time        : 2019/4/24 下午3:52
    # @Author    : Dynasty
    # @File        : input_data.py
    # @Software: PyCharm
    
    # Copyright 2015 Google Inc. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #         http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Functions for downloading and reading MNIST data."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import gzip
    import os
    import tensorflow.python.platform
    import numpy
    from six.moves import urllib
    from six.moves import xrange    # pylint: disable=redefined-builtin
    import tensorflow as tf
    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
    
    
    def maybe_download(filename, work_directory):
        """Download the data from Yann's website, unless it's already here."""
        if not os.path.exists(work_directory):
            os.mkdir(work_directory)
        filepath = os.path.join(work_directory, filename)
        if not os.path.exists(filepath):
            filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
            statinfo = os.stat(filepath)
            print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
        return filepath
    
    
    def _read32(bytestream):
        dt = numpy.dtype(numpy.uint32).newbyteorder('>')
        return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
    
    
    def extract_images(filename):
        """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2051:
                raise ValueError(
                        'Invalid magic number %d in MNIST image file: %s' %
                        (magic, filename))
            num_images = _read32(bytestream)
            rows = _read32(bytestream)
            cols = _read32(bytestream)
            buf = bytestream.read(rows * cols * num_images)
            data = numpy.frombuffer(buf, dtype=numpy.uint8)
            data = data.reshape(num_images, rows, cols, 1)
            return data
    
    
    def dense_to_one_hot(labels_dense, num_classes=10):
        """Convert class labels from scalars to one-hot vectors."""
        num_labels = labels_dense.shape[0]
        index_offset = numpy.arange(num_labels) * num_classes
        labels_one_hot = numpy.zeros((num_labels, num_classes))
        labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
        return labels_one_hot
    
    
    def extract_labels(filename, one_hot=False):
        """Extract the labels into a 1D uint8 numpy array [index]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2049:
                raise ValueError(
                        'Invalid magic number %d in MNIST label file: %s' %
                        (magic, filename))
            num_items = _read32(bytestream)
            buf = bytestream.read(num_items)
            labels = numpy.frombuffer(buf, dtype=numpy.uint8)
            if one_hot:
                return dense_to_one_hot(labels)
            return labels
    
    
    class DataSet(object):
        def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32):
            """Construct a DataSet.
            one_hot arg is used only if fake_data is true.    `dtype` can be either
            `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
            `[0, 1]`.
            """
            dtype = tf.as_dtype(dtype).base_dtype
            if dtype not in (tf.uint8, tf.float32):
                raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype)
            if fake_data:
                self._num_examples = 10000
                self.one_hot = one_hot
            else:
                assert images.shape[0] == labels.shape[0], (
                        'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
                self._num_examples = images.shape[0]
                # Convert shape from [num examples, rows, columns, depth]
                # to [num examples, rows*columns] (assuming depth == 1)
                assert images.shape[3] == 1
                images = images.reshape(images.shape[0], images.shape[1] * images.shape[2])
                if dtype == tf.float32:
                    # Convert from [0, 255] -> [0.0, 1.0].
                    images = images.astype(numpy.float32)
                    images = numpy.multiply(images, 1.0 / 255.0)
            self._images = images
            self._labels = labels
            self._epochs_completed = 0
            self._index_in_epoch = 0
    
        @property
        def images(self):
            return self._images
    
        @property
        def labels(self):
            return self._labels
    
        @property
        def num_examples(self):
            return self._num_examples
    
        @property
        def epochs_completed(self):
            return self._epochs_completed
    
        def next_batch(self, batch_size, fake_data=False):
            """Return the next `batch_size` examples from this data set."""
            if fake_data:
                fake_image = [1] * 784
                if self.one_hot:
                    fake_label = [1] + [0] * 9
                else:
                    fake_label = 0
                return [fake_image for _ in xrange(batch_size)], [
                        fake_label for _ in xrange(batch_size)]
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
            if self._index_in_epoch > self._num_examples:
                # Finished epoch
                self._epochs_completed += 1
                # Shuffle the data
                perm = numpy.arange(self._num_examples)
                numpy.random.shuffle(perm)
                self._images = self._images[perm]
                self._labels = self._labels[perm]
                # Start next epoch
                start = 0
                self._index_in_epoch = batch_size
                assert batch_size <= self._num_examples
            end = self._index_in_epoch
            return self._images[start:end], self._labels[start:end]
    
    
    def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
        class DataSets(object):
            pass
            
            
        data_sets = DataSets()
        if fake_data:
            def fake():
                return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
            data_sets.train = fake()
            data_sets.validation = fake()
            data_sets.test = fake()
            return data_sets
        TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
        TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
        TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
        TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
        VALIDATION_SIZE = 5000
        local_file = maybe_download(TRAIN_IMAGES, train_dir)
        train_images = extract_images(local_file)
        local_file = maybe_download(TRAIN_LABELS, train_dir)
        train_labels = extract_labels(local_file, one_hot=one_hot)
        local_file = maybe_download(TEST_IMAGES, train_dir)
        test_images = extract_images(local_file)
        local_file = maybe_download(TEST_LABELS, train_dir)
        test_labels = extract_labels(local_file, one_hot=one_hot)
        validation_images = train_images[:VALIDATION_SIZE]
        validation_labels = train_labels[:VALIDATION_SIZE]
        train_images = train_images[VALIDATION_SIZE:]
        train_labels = train_labels[VALIDATION_SIZE:]
        data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
        data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype)
        data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
        return data_sets
    

    相关文章

      网友评论

        本文标题:MNIST数据集input_data代码下载

        本文链接:https://www.haomeiwen.com/subject/kpijfctx.html