美文网首页
相变——对称和对称破缺

相变——对称和对称破缺

作者: JohnMarti | 来源:发表于2020-11-09 23:13 被阅读0次

    对称性的概念不难理解,在自然界及人工的建筑、艺术等领域,几何对称现象随处可见。固体中的晶格是一种空间状态重复的几何对称结构。如果将整个晶体移动一个晶格常数a,结果仍然是原来的系统。换言之,晶格结构具有在空间平移a的变换下系统保持不变的对称性。所以,对称的意思就是系统在某种变换下保持状态不变。除了空间平移变换之外,还有空间旋转、空间反演等等其它种类的变换。除了在三维空间的各种变换之外,还有对于时间的平移或反演变换,以及其它抽象的或内禀性质的变换。各种变换对应于各种不同的对称性。

    物理学中有一个诺特定理,由德国女数学家埃米·诺特(Emmy Noether,1882-1935)发现,它将物理中的守恒定律与对称性联系在一起。例如,能量守恒定律对应时间对称性;动量守恒对应空间平移对称;角动量守恒对应旋转对称性等等。我们在此不予详述。

    大千世界不仅有对称,也有不对称。观察我们周围的世界:人的左脸并不完全等同于右脸,大多数人的心脏长在左边,大多数的DNA分子是右旋的,地球并不是一个完全规则的球形……正是因为对称中有了这些不对称的元素,对称与不对称的和谐交汇,才创造了我们丰富多彩的世界。

    即便是对称的情况,也有各种等级的高低之分。比如说,一个正三角形,和一个等腰三角形比较,正三角形应该更为对称一些;球面比椭球面具有更多的对称性。此外,物体状态的对称性也会变化,从低到高,或者从高到低。

    相变和对称破缺

    朗道将凝聚态物理中的相变与物质结构中对称性的变化联系在一起。他把从高对称到低的对称过程叫做“对称破缺”。相应的,反过来的相变则意味着“对称恢复”。然而,如何判断对称性的“高低”呢?特别需要提醒的是:有时候我们会将“对称性”与“有序性”等同起来,但事实上这两个概念的“高低”程度正好相反。越有序的结构,对称性反而越低。以下举个简单例子来说明。

    图所示的是“固态→液晶→液态”过程中物质分子结构的变化。这三者的对称性,到底孰高孰低呢?

    固态中水分子有次序地排列起来,形成整齐漂亮的格子或图案(晶格);在液晶中,三维晶格被破环了,成为一维晶体。之后,随着温度继续升高,一维的有序结构也被破坏而成为无序的液体:液态中的水分子做着随机而无规则的布朗运动——没有固定的方向,没有固定的位置,处于完全无序的状态,在任何方向、任何点看起来都是一样的。而这正是我们所谓的对称性最“高”的状态,也就是说,液态的对称性很高,却无序。液晶和固态,相较液态而言,有序程度逐渐增加,对称性却逐步降低。

    用数学的语言来描述的话,液态时,如果将空间坐标作任何平移变换,系统的性质都不会改变,表明对空间的高度对称。而当水结成冰之后,系统只在沿着某些空间方向,平移晶格常数a的整数倍的时候,才能保持不变。所以,物质从液态到固态,对称性降低,也就是破缺了,从连续的平移对称性减少成了离散的平移对称性。或叫做:固态破缺了液态的连续平移对称性,即晶体是液体的任意平移对称性破缺的产物。相比于液体,晶体的粒子密度出现了空间上的周期调制,因而更加有序,而从无到有的周期调制的变化,便可以表征物质从液体结晶为固体时的相变。

    对称破缺(Symmetry Breaking)分为两大类:明显对称性破缺和自发对称性破缺。第一类“对称破缺”的原因是自然规律决定的,是因为某些物理系统本身就不具有某些物理规律对应的对称性,这类对称破缺的著名例子是李政道与杨振宁发现的“弱相互作用中宇称不守恒”(CP violation)。

    第二类“自发对称破缺”是物理学家更感兴趣的。这种情况下,物理系统仍然遵循某种对称性,但物理系统更低的能量态(包括真空态)却不具有此种对称性。这种对称破缺的著名例子包括超导物理中的BCS理论,以及基本粒子标准模型中的希格斯机制。

    将“自发对称破缺”再表达得更清楚一些,就是说物理规律具有某种对称性,但是它的方程的某一个解,也就是物理系统实际上所处的某个状态,却不具有这种对称性。这样,我们看到的世界中一切现实情况,都是“自发对称破缺”后的某种特别情形。因此,它只能反映物理规律的一小部分侧面。图5中举了几个日常生活中的例子来说明对称性的“破缺”。

    自然界的明显对称破缺和自发对称破缺

    图中所示是一个在山坡上的石头,山坡造成重力势能的不对称性,使得石头往右边滚动,这是一种明显对称性破缺。在图5b的情况,一支铅笔竖立在桌子上,它所受的力是四面八方都对称的,它朝任何一个方向倒下的几率都相等。但是,铅笔最终只会倒向一个方向,这就破坏了它原有的旋转对称性。这种破坏不是由于物理规律或周围环境的不对称造成的,而是铅笔自身不稳定因素诱发的,所以叫自发对称破缺。图5c的水滴结晶成某个雪花图案的过程也属于自发对称性破缺。

    日裔美国物理学家南部阳一郎首先将“对称破缺”这一概念从凝聚态物理引进到粒子物理学中[7]。南部为此和另外两位发现正反物质对称破缺起源的日本物理学家小林诚和益川敏英(Toshihide Maskawa,1940-)分享了2008年的诺贝尔物理学奖。

    凝聚态物理和粒子物理,初看似乎是风马牛不相干的两个领域,在研究时所涉及的能量级别上也相差几百亿倍,但它们在本质上却有一个共同之处:研究的都是维数巨大的系统,粒子物理基于量子场论,凝聚态物理研究的是连续多粒子体系。量子系统的维数需要趋于无穷大,是自发对称破缺发生的必要条件。与相变相关的“对称破缺”思想,应用于粒子物理,解决了标准模型中的质量问题。

    相关文章

      网友评论

          本文标题:相变——对称和对称破缺

          本文链接:https://www.haomeiwen.com/subject/krfdbktx.html