大数据时代,数据驱动决策。处理不好庞大、复杂的数据,其价值将大打折扣。那如何缩短数据与用户的距离?让用户一眼抓到重点?让老板为你的汇报方案鼓掌?
本文通过连环15关,层层深入,传你数据匹配图形神功,让数据可视化更高效。无论数据总量和复杂程度如何,数据间的关系大多可分为三类:比较/构成/分布&联系。
01 比较
基于分类/时间的数据对比,通常需用到比较型图表。用户通过图表轻松识别最大/最小值,查看当前和过去的数据变动情况。
常见场景:哪个地区的收件量最多?今年的收入和去年相比如何……
1)条目少 – 柱状图
类似的图形表达为直方图,不过后者较柱状图而言更复杂(直方图可以表达两个不同的变量),主要用于数据的统计与分析。
比较条目较少时,如5个地区收件量的对比,可选用柱状图表示。
柱状图
2) 条目多 – 条形图
排列在工作表的列或行中的数据可以绘制到条形图中。条形图显示各个项目之间的比较情况。
当条目较多,如大于12条,移动端上的柱状图会显得拥挤不堪,更适合用条形图。一般数据条目不超过30条,否则易带来视觉和记忆负担。
条形图
3) 看趋势 – 折线图
折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。
当X轴为连续数值(如时间)且注重变化趋势时,则适用折线图。
折线图
4) 扩大差异 – 南丁格尔玫瑰图
又名为极区图,是一种圆形的直方图。南丁格尔自己常昵称这类图为鸡冠花图(coxcomb),并且用以表达军医院季节性的死亡率,对象是那些不太能理解传统统计报表的公务人员。
除柱状图外,有无更新颖的表现方式呢?那就属南丁格尔玫瑰图了。
南丁格尔玫瑰图
由于扇形的半径和面积是平方的关系,南丁格尔玫瑰图会将数值之间的差异放大,适合对比大小相近的数值。它不适合对比差异较大的数值,因为数值过小的类目会难以观察。
此外,因为圆有周期性,玫瑰图也适于表示周期/时间概念,比如星期、月份。依然建议数据量不超过30条,超出可考虑条形图。
5) 双向 – 双向条形图
前面的例子都是单维度比较,当比较正反两类甚至更多维度的数据时,可尝试双向条形图,下图为各大区的重点地区的收派件量的对比。
双向条形图
用颜色区分大区,空心/实心区分收件量和派件量,既能整体比较大区,又能详细对比地区的情况。
打怪升级,再加点难度。在双向图上再增加一个维度,如下表,比较5个地区的利润及相应的收入和成本。请先思考一下,再下滑看推荐图表。
业务数据
双向条形图(多维度)
通过图形一眼就能看出深圳区的利润低于广州区,即使它的收入高于广州区,但成本相对来说高于广州区。
6) 目标达成 – 子弹图
子弹图,顾名思义是由于该类信息图的样子很像子弹射出后带出的轨道。
实际业务中,常要考察指标的达成情况,如收入达标情况及所处区间(优、良、差),如下表,你会怎么可视化呢?动手画一画吧!
业务数据
子弹图
子弹图,因为像子弹射后带出的轨道。相较于仪表盘,它能够在狭小的空间中表达丰富的数据信息,在信息传递上有更大的效能优势。
若还要比较4个季度的收入情况,只需用不同颜色区分。如下图,一眼便知第二季度表现较好,而第一季度则不佳。
子弹图
7) 性能 – 雷达图
又可称为戴布拉图、蜘蛛网图(Spider Chart),是财务分析报表的一种。即将一个公司的各项财务分析所得的数字或比率,就其比较重要的项目集中划在一个圆形的图表上,来表现一个公司各项财务比率的情况,使用者能一目了然的了解公司各项财务指标的变动情形及其好坏趋向。
对于一些多维的性能数据,如综合评价,常用雷达图表示。指标得分接近圆心,说明处于较差状态,应分析改进;指标得分接近外边线,说明处于理想状态。


网友评论