美文网首页
线性代数学习总结-行列式

线性代数学习总结-行列式

作者: ZerLon51 | 来源:发表于2020-01-04 15:49 被阅读0次

    行列式是一个单独的数字,这个数字包含了矩阵的很多信息。
    比起直接讲行列式令人费解,而又让人觉得神奇的计算公式,我觉得应该从线性变换以及二维面积(三维体积更高维的什么我也不知道)入手要比较容易理解一点。

    首先,对于方程Ax=b而言,其实可以看作Ax=Ib,这里假设矩阵A代表的是另一种坐标空间,其实Ax=Ib表示的意思就是,向量x经过变换,转换成了单位坐标空间I中的坐标b。或者如果x是矩阵的话,相应的意思也成立。这里跟前面讲的矩阵求解的时候,记录变换矩阵E是一个意思。

    举个简单的栗子

    二维空间中I=\begin{bmatrix}1&0\\0&1\end{bmatrix}单位矩阵I的两个分量构成了一个正方形,如下图

    1x1
    然后,如果我们想要I的第一个分量(1,0)缩放a倍,第二个分量(0,1)缩放b倍,于是改变单位矩阵II_1=\begin{bmatrix}a&0\\0&b\end{bmatrix}那么,I_2的两个向量组成的图形的面积很明显变成了ab ab (ps:上面图(b,0)应该是(0,b))
    如果我们再改变\begin{bmatrix}a\\0\end{bmatrix}使之往y的方向平移c个单位,同样的我们改变另一个向量\begin{bmatrix}0\\b\end{bmatrix}使之往x的方向平移d个单位,最终图形变成了一个平行四边形 abcd 它的面积变为了ab-cd
    因此,对于二维空间而言,用几何的意义来理解,可以理解为ab-cd就是原面积的缩放倍数。拓展到三维空间就可能是体积,更高维的什么其他东西。

    ab-cd就是该矩阵的行列式,记作detA=|A|

    性质
    • 行列式为0说明该矩阵不可逆
    • 行交换会改变行列式的符号
    • 行列式的线性组合规则如下

    \begin{vmatrix}ta_{00}&ta_{01}&...&ta_{0n}\\a_{10}&a_{11}&...&a_{1n}\\...\\a_{m0}&a_{m1}&...&a_{mn}\end{vmatrix}=t\begin{vmatrix}a_{00}&a_{01}&...&a_{0n}\\a_{10}&a_{11}&...&a_{1n}\\...\\a_{m0}&a_{m1}&...&a_{mn}\end{vmatrix}
    \begin{vmatrix}a_{00} + a'_{00}&a_{01}+ a'_{01}&...&a_{0n}+ a'_{0n}\\a_{10}&a_{11}&...&a_{1n}\\...\\a_{m0}&a_{m1}&...&a_{mn}\end{vmatrix}=\begin{vmatrix}a_{00}&a_{01}&...&a_{0n}\\a_{10}&a_{11}&...&a_{1n}\\...\\a_{m0}&a_{m1}&...&a_{mn}\end{vmatrix}+\begin{vmatrix}a'_{00}&a'_{01}&...&a'_{0n}\\a_{10}&a_{11}&...&a_{1n}\\...\\a_{m0}&a_{m1}&...&a_{mn}\end{vmatrix}

    • 如果两行线性相关,行列式为0

    运算就不讲了。

    相关文章

      网友评论

          本文标题:线性代数学习总结-行列式

          本文链接:https://www.haomeiwen.com/subject/lausoctx.html