Flink Standalone Cluster 集群安装

作者: it_zzy | 来源:发表于2018-09-12 17:44 被阅读13次

    Flink Standalone Cluster 集群安装


    本文主要介绍如何将Flink以分布式模式运行在集群上(可能是异构的)。

    环境准备

    Flink 运行在所有类 UNIX 环境上,例如 Linux、Mac OS X 和 Cygwin(对于Windows),而且要求集群由一个master节点和一个或多个worker节点组成。在安装系统之前,确保每台机器上都已经安装了下面的软件:

    • Java 1.8.x或更高版本
    • ssh(Flink的脚本会用到sshd来管理远程组件)

    如果你的集群还没有完全装好这些软件,你需要安装/升级它们。例如,在 Ubuntu Linux 上, 你可以执行下面的命令安装 ssh 和 Java :

    sudo apt-get install ssh 
    sudo apt-get install openjdk-8-jre
    

    SSH免密码登录

    译注:安装过Hadoop、Spark集群的用户应该对这段很熟悉,如果已经了解,可跳过。

    为了能够启动/停止远程主机上的进程,master节点需要能免密登录所有worker节点。最方便的方式就是使用ssh的公钥验证了。要安装公钥验证,首先以最终会运行Flink的用户登录master节点。所有的worker节点上也必须要有同样的用户(例如:使用相同用户名的用户)。由于以前安装过ES,用的是es用户,所以本文会以 es用户为例。非常不建议使用 root 账户,这会有很多的安全问题。

    当你用需要的用户登录了master节点,你就可以生成一对新的公钥/私钥。下面这段命令会在 ~/.ssh 目录下生成一对新的公钥/私钥。

    ssh-keygen -b 2048 -P '' -f ~/.ssh/id_rsa
    

    接下来,将公钥添加到用于认证的authorized_keys文件中:

    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    

    最后,将authorized_keys文件分发给集群中所有的worker节点,你可以重复地执行下面这段命令:

    scp ~/.ssh/authorized_keys <worker>:~/.ssh/
    

    将上面的<worker>替代成相应worker节点的IP/Hostname。完成了上述拷贝的工作,你应该就可以从master上免密登录其他机器了。

    ssh <worker>
    

    配置JAVA_HOME

    Flink 需要master和worker节点都配置了JAVA_HOME环境变量。有两种方式可以配置。
    一种是,你可以在conf/flink-conf.yaml中设置env.java.home配置项为Java的安装路径。
    另一种是,sudo vi /etc/profile,在其中添加JAVA_HOME:

    #java
    export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
    export PATH=$JAVA_HOME/bin:$PATH
    export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$CLASSPATH
    
    #node
    export NODE_HOME=/usr/local/es/node-v9.11.1-linux-x64
    export PATH=$NODE_HOME/bin:$PATH
    
    #maven
    export MAVEN_HOME=/usr/local/software/maven-3.5.3
    export PATH=$MAVEN_HOME/bin:$PATH
    
    #hadoop
    export HADOOP_HOME=/usr/local/software/hadoop-2.8.3
    export PATH=$PATH:$HADOOP_HOME/bin
    export PATH=$PATH:$HADOOP_HOME/sbin
    export HADOOP_MAPRED_HOME=$HADOOP_HOME
    export HADOOP_COMMON_HOME=$HADOOP_HOME
    export HADOOP_HDFS_HOME=$HADOOP_HOME
    export YARN_HOME=$HADOOP_HOME
    export HADOOP_ROOT_LOGGER=INFO,console
    export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
    export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
    
    #hive
    export HIVE_HOME=/usr/local/software/hive-2.2.0
    export PATH=$HIVE_HOME/bin:$PATH
    

    然后使环境变量生效,并验证 Java 是否安装成功

    es@es1:/root$ java -version
    openjdk version "1.8.0_162"
    OpenJDK Runtime Environment (build 1.8.0_162-8u162-b12-0ubuntu0.16.04.2-b12)
    OpenJDK 64-Bit Server VM (build 25.162-b12, mixed mode)
    

    安装Flink

    进入下载页面。请选择一个与你的Hadoop版本相匹配的Flink包。如果你不打算使用Hadoop,选择任何版本都可以。
    我这里下载的flink是flink-1.5.1,hadoop是hadoop-2.8.3。
    在下载了最新的发布包后,拷贝到master节点上,并解压:

    tar xzf flink-1.5.1/.tgz
    cd flink-1.5.1/
    

    配置Flink

    在解压完之后,你需要编辑conf/flink-conf.yaml配置Flink。

    设置jobmanager.rpc.address配置项为你的master节点地址。另外为了明确 JVM 在每个节点上所能分配的最大内存,我们需要配置jobmanager.heap.mb和taskmanager.heap.mb,值的单位是 MB。如果对于某些worker节点,你想要分配更多的内存给Flink系统,你可以在相应节点上设置FLINK_TM_HEAP环境变量来覆盖默认的配置。
    flink-conf.yaml配置如下:

    es@es2:/usr/local/software/flink-1.5.1$ cat conf/flink-conf.yaml
    ################################################################################
    #  Licensed to the Apache Software Foundation (ASF) under one
    #  or more contributor license agreements.  See the NOTICE file
    #  distributed with this work for additional information
    #  regarding copyright ownership.  The ASF licenses this file
    #  to you under the Apache License, Version 2.0 (the
    #  "License"); you may not use this file except in compliance
    #  with the License.  You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing, software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    # limitations under the License.
    ################################################################################
    
    
    #==============================================================================
    # Common
    #==============================================================================
    
    # The external address of the host on which the JobManager runs and can be
    # reached by the TaskManagers and any clients which want to connect. This setting
    # is only used in Standalone mode and may be overwritten on the JobManager side
    # by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
    # In high availability mode, if you use the bin/start-cluster.sh script and setup
    # the conf/masters file, this will be taken care of automatically. Yarn/Mesos
    # automatically configure the host name based on the hostname of the node where the
    # JobManager runs.
    
    #jobmanager.rpc.address: localhost
    jobmanager.rpc.address: es2
    
    # The RPC port where the JobManager is reachable.
    
    jobmanager.rpc.port: 6123
    
    
    # The heap size for the JobManager JVM
    
    jobmanager.heap.mb: 1024
    
    
    # The heap size for the TaskManager JVM
    
    taskmanager.heap.mb: 1024
    
    
    # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
    
    taskmanager.numberOfTaskSlots: 1
    
    # The parallelism used for programs that did not specify and other parallelism.
    
    parallelism.default: 1
    
    # The default file system scheme and authority.
    #
    # By default file paths without scheme are interpreted relative to the local
    # root file system 'file:///'. Use this to override the default and interpret
    # relative paths relative to a different file system,
    # for example 'hdfs://mynamenode:12345'
    #
    # fs.default-scheme
    
    #==============================================================================
    # High Availability
    #==============================================================================
    
    # The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
    #
    # high-availability: zookeeper
    
    # The path where metadata for master recovery is persisted. While ZooKeeper stores
    # the small ground truth for checkpoint and leader election, this location stores
    # the larger objects, like persisted dataflow graphs.
    #
    # Must be a durable file system that is accessible from all nodes
    # (like HDFS, S3, Ceph, nfs, ...)
    #
    # high-availability.storageDir: hdfs:///flink/ha/
    
    # The list of ZooKeeper quorum peers that coordinate the high-availability
    # setup. This must be a list of the form:
    # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
    #
    # high-availability.zookeeper.quorum: localhost:2181
    
    
    # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
    # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
    # The default value is "open" and it can be changed to "creator" if ZK security is enabled
    #
    # high-availability.zookeeper.client.acl: open
    
    #==============================================================================
    # Fault tolerance and checkpointing
    #==============================================================================
    
    # The backend that will be used to store operator state checkpoints if
    # checkpointing is enabled.
    #
    # Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
    # <class-name-of-factory>.
    #
    # state.backend: filesystem
    
    # Directory for checkpoints filesystem, when using any of the default bundled
    # state backends.
    #
    # state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
    
    # Default target directory for savepoints, optional.
    #
    # state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints
    
    # Flag to enable/disable incremental checkpoints for backends that
    # support incremental checkpoints (like the RocksDB state backend).
    #
    # state.backend.incremental: false
    
    #==============================================================================
    # Web Frontend
    #==============================================================================
    
    # The address under which the web-based runtime monitor listens.
    #
    #jobmanager.web.address: 0.0.0.0
    
    # The port under which the web-based runtime monitor listens.
    # A value of -1 deactivates the web server.
    
    rest.port: 8081
    
    # Flag to specify whether job submission is enabled from the web-based
    # runtime monitor. Uncomment to disable.
    
    #jobmanager.web.submit.enable: false
    
    #==============================================================================
    # Advanced
    #==============================================================================
    
    # Override the directories for temporary files. If not specified, the
    # system-specific Java temporary directory (java.io.tmpdir property) is taken.
    #
    # For framework setups on Yarn or Mesos, Flink will automatically pick up the
    # containers' temp directories without any need for configuration.
    #
    # Add a delimited list for multiple directories, using the system directory
    # delimiter (colon ':' on unix) or a comma, e.g.:
    #     /data1/tmp:/data2/tmp:/data3/tmp
    #
    # Note: Each directory entry is read from and written to by a different I/O
    # thread. You can include the same directory multiple times in order to create
    # multiple I/O threads against that directory. This is for example relevant for
    # high-throughput RAIDs.
    #
    # io.tmp.dirs: /tmp
    
    # Specify whether TaskManager's managed memory should be allocated when starting
    # up (true) or when memory is requested.
    #
    # We recommend to set this value to 'true' only in setups for pure batch
    # processing (DataSet API). Streaming setups currently do not use the TaskManager's
    # managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
    # while the 'memory' and 'filesystem' backends explicitly keep data as objects
    # to save on serialization cost.
    #
    # taskmanager.memory.preallocate: false
    
    # The classloading resolve order. Possible values are 'child-first' (Flink's default)
    # and 'parent-first' (Java's default).
    #
    # Child first classloading allows users to use different dependency/library
    # versions in their application than those in the classpath. Switching back
    # to 'parent-first' may help with debugging dependency issues.
    #
    # classloader.resolve-order: child-first
    
    # The amount of memory going to the network stack. These numbers usually need
    # no tuning. Adjusting them may be necessary in case of an "Insufficient number
    # of network buffers" error. The default min is 64MB, teh default max is 1GB.
    #
    # taskmanager.network.memory.fraction: 0.1
    # taskmanager.network.memory.min: 67108864
    # taskmanager.network.memory.max: 1073741824
    
    #==============================================================================
    # Flink Cluster Security Configuration
    #==============================================================================
    
    # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
    # may be enabled in four steps:
    # 1. configure the local krb5.conf file
    # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
    # 3. make the credentials available to various JAAS login contexts
    # 4. configure the connector to use JAAS/SASL
    
    # The below configure how Kerberos credentials are provided. A keytab will be used instead of
    # a ticket cache if the keytab path and principal are set.
    
    # security.kerberos.login.use-ticket-cache: true
    # security.kerberos.login.keytab: /path/to/kerberos/keytab
    # security.kerberos.login.principal: flink-user
    
    # The configuration below defines which JAAS login contexts
    
    # security.kerberos.login.contexts: Client,KafkaClient
    
    #==============================================================================
    # ZK Security Configuration
    #==============================================================================
    
    # Below configurations are applicable if ZK ensemble is configured for security
    
    # Override below configuration to provide custom ZK service name if configured
    # zookeeper.sasl.service-name: zookeeper
    
    # The configuration below must match one of the values set in "security.kerberos.login.contexts"
    # zookeeper.sasl.login-context-name: Client
    
    #==============================================================================
    # HistoryServer
    #==============================================================================
    
    # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
    
    # Directory to upload completed jobs to. Add this directory to the list of
    # monitored directories of the HistoryServer as well (see below).
    #jobmanager.archive.fs.dir: hdfs:///completed-jobs/
    
    # The address under which the web-based HistoryServer listens.
    #historyserver.web.address: 0.0.0.0
    
    # The port under which the web-based HistoryServer listens.
    #historyserver.web.port: 8082
    
    # Comma separated list of directories to monitor for completed jobs.
    #historyserver.archive.fs.dir: hdfs:///completed-jobs/
    
    # Interval in milliseconds for refreshing the monitored directories.
    #historyserver.archive.fs.refresh-interval: 10000
    

    最后,你需要提供一个集群中worker节点的列表。因此,就像配置HDFS,编辑conf/slaves文件,然后输入每个worker节点的 IP/Hostname。每一个worker结点之后都会运行一个 TaskManager。
    每一条记录占一行,就像下面展示的一样:

    es@es2:/usr/local/software/flink-1.5.1$ cat conf/slaves
    #localhost
    es1
    es2
    

    conf:

    conf

    译注:conf/master文件是用来做JobManager HA的,在这里不需要配置

    每一个worker节点上的 Flink 路径必须一致。你可以使用共享的 NSF 目录,或者拷贝整个 Flink 目录到各个worker节点。

    cp -r /path/to/flink <worker>:/path/to/
    

    请查阅配置页面了解更多关于Flink的配置。
    特别的,这几个

    • TaskManager 总共能使用的内存大小(taskmanager.heap.mb)
    • 每一台机器上能使用的 CPU 个数(taskmanager.numberOfTaskSlots)
    • 集群中的总 CPU 个数(parallelism.default)
    • 临时目录(taskmanager.tmp.dirs)

    是非常重要的配置项。

    启动Flink

    下面的脚本会在本地节点启动一个 JobManager,然后通过 SSH 连接所有的worker节点(slaves文件中所列的节点),并在每个节点上运行 TaskManager。现在你的 Flink 系统已经启动并运行了。跑在本地节点上的 JobManager 现在会在配置的 RPC 端口上监听并接收任务。

    假定你在master节点上,并在Flink目录中:

    bin/start-cluster.sh
    

    master上启动的进程:


    slave上启动的进程:


    访问8081端口:


    可以看到两个taskManager都成功加入进来了。

    要停止Flink,也有一个 stop-cluster.sh 脚本。

    添加 JobManager/TaskManager 实例到集群中

    你可以使用 bin/jobmanager.sh 和 bin/taskmanager 脚本来添加 JobManager 和 TaskManager 实例到你正在运行的集群中。

    添加一个 JobManager

    bin/jobmanager.sh (start cluster)|stop|stop-all
    

    添加一个 TaskManager

    bin/taskmanager.sh start|stop|stop-all
    

    确保你是在需要启动/停止相应实例的节点上运行的这些脚本。

    参考:

    相关文章

      网友评论

        本文标题:Flink Standalone Cluster 集群安装

        本文链接:https://www.haomeiwen.com/subject/lklbgftx.html