1. 官网教程
2. 博文教程
3. HTODemux()
Seurat_object_HTO <- HTODemux(Seurat_object_HTO, assay="HTO", positive.quantile=0.8)
positive.quantile=
: 用来区分hashtag
信号的强度;高于此数值则为positive
;默认值为0.99
输出结果:
HTO_maxID
: Name of hashtag with the highest signal
HTO_secondID
: Name of hashtag with the second highest signal
HTO_margin
: The difference between signals for hash.maxID and hash.secondID
HTO_classification
: Classification result, with doublets/multiplets named by the top two highest hashtags
HTO_classification.global
: Global classification result (singlet, doublet or negative)
hash.ID
: Classification result where doublet IDs are collapsed
其中,
HTO_classification
,HTO_classification.global
和hash.ID
三列的结果是对等的根据需求和标准不同,
HTO_maxID
和hash.ID
均可作为分类依据
4. MULTIseqDemux()
Seurat_object_HTO <- MULTIseqDemux(Seurat_object_HTO, assay="HTO", quantile=0.7)
positive.quantile=
: 用来区分hashtag
信号的强度;高于此数值则为positive
;默认值为0.7
Seurat
中另一个用来根据hashtag
信号进行细胞分类的函数
输出结果:
MULTI_ID
: Classification result where doublet IDs are collapsed
MULTI_classification
: Classification result, with doublets/multiplets named by the top two highest hashtags
- 两个结果是对等的,可以根据需求来选择用哪个结果作为分类标准
5. 基本流程
require(Seurat)
Seurat_object_HTO <- NormalizeData(Seurat_object_HTO, assay = "HTO", normalization.method = "CLR") '#用 CLR 方法对 HTO 信号进行归一化
Seurat_object_HTO <- HTODemux(Seurat_object_HTO, assay = "HTO", positive.quantile = 0.8) #细胞分类方式一
Seurat_object_HTO <- MULTIseqDemux(Seurat_object_HTO, assay = "HTO") #细胞分类方式二
6. 结果展示
'#Calculate the tSNE embedding based on the HTO matrix
DefaultAssay(sample_mix) <- "HTO"
sample_mix <- ScaleData(sample_mix, features = rownames(sample_mix),verbose = FALSE)
sample_mix <- RunPCA(sample_mix, features = rownames(sample_mix), approx = FALSE)
sample_mix <- RunTSNE(sample_mix, dims = 1:5, perplexity = 100, reduction = "pca", check_duplicates=F)
DimPlot(sample_mix)
#----------------------------------------------------------------------------------------#
#The tSNE dimensional reduction based on the PC of HTO matrix
DimPlot(sample_mix)
#----------------------------------------------------------------------------------------#
#Heatmap shows the signal variance of different cells
HTOHeatmap(sample_mix, assay = "HTO")
网友评论