计算机内存是以字节(Byte)为单位划分的,理论上CPU可以访问任意编号的字节,但实际情况并非如此。
CPU 通过地址总线来访问内存,一次能处理几个字节的数据,就命令地址总线读取几个字节的数据。32 位的 CPU 一次可以处理4个字节的数据,那么每次就从内存读取4个字节的数据;少了浪费主频,多了没有用。64位的处理器也是这个道理,每次读取8个字节。
以32位的CPU为例,实际寻址的步长为4个字节,也就是只对编号为 4 的倍数的内存寻址,例如 0、4、8、12、1000 等,而不会对编号为 1、3、11、1001 的内存寻址。如下图所示:
![](https://img.haomeiwen.com/i9414213/0bfbfb147ca55ec4.jpeg)
这样做可以以最快的速度寻址:不遗漏一个字节,也不重复对一个字节寻址。
对于程序来说,一个变量最好位于一个寻址步长的范围内,这样一次就可以读取到变量的值;如果跨步长存储,就需要读取两次,然后再拼接数据,效率显然降低了。
例如一个 int 类型的数据在内存中占据4个字节,如果地址为 8,那么很好办,对编号为 8 的内存寻址一次就可以。如果编号为 10,就比较麻烦,CPU需要先对编号为 8 的内存寻址,读取4个字节,得到该数据的前半部分,然后再对编号为 12 的内存寻址,读取4个字节,得到该数据的后半部分,再将这两部分拼接起来,才能取得数据的值。
将一个数据尽量放在一个步长之内,避免跨步长存储,这称为内存对齐。在32位编译模式下,默认以4字节对齐;在64位编译模式下,默认以8字节对齐。
关于Go语言的内存对齐示例请看这里:
Go 内存对齐-结构体
网友评论