美文网首页PyTorchPytorch
10分钟快速入门PyTorch (5)

10分钟快速入门PyTorch (5)

作者: SherlockLiao | 来源:发表于2017-06-04 11:46 被阅读256次

前面一节我们讲了cnn以及如何使用pytorch实现简单的多层卷积神经网络,下面我们将进入rnn,对于rnn我也涉及不多,欢迎各位高手提出宝贵的意见。

关于rnn将分成三个部分,第一个部分先介绍rnn的基本结构以及在pytorch里面api的各个参数所表示的含义,下一个部分将介绍rnn如何在MNIST数据集上做分类,最后一个部分涉及一点点自然语言处理的东西。

RNN

首先介绍一下什么是rnn,rnn特别擅长处理序列类型的数据,因为他是一个循环的结构

1

一个序列的数据依次进入网络A,网络A循环的往后传递。

这就是RNN的基本结构类型。而最早的RNN模型,序列依次进入网络中,之前进入序列的数据会保存信息而对后面的数据产生影响,所以RNN有着记忆的特性,而同时越前面的数据进入序列的时间越早,所以对后面的数据的影响也就越弱,简而言之就是一个数据会更大程度受到其临近数据的影响。但是我们很有可能需要更长时间之前的信息,而这个能力传统的RNN特别弱,于是有了LSTM这个变体。

LSTM

2

这就是LSTM的模型结构,也是一个向后传递的链式模型,而现在广泛使用的RNN其实就是LSTM,序列中每个数据传入LSTM可以得到两个输出,而这两个输出和序列中下一个数据一起又作为传入LSTM的输入,然后不断地循环向后,直到序列结束。

下面结合pytorch一步一步来看数据传入LSTM是怎么运算的

首先需要定义好LSTM网络,需要nn.LSTM(),首先介绍一下这个函数里面的参数

input_size 表示的是输入的数据维数

hidden_size 表示的是输出维数

num_layers 表示堆叠几层的LSTM,默认是1

bias True 或者 False,决定是否使用bias

batch_first True 或者 False,因为nn.lstm()接受的数据输入是(序列长度,batch,输入维数),这和我们cnn输入的方式不太一致,所以使用batch_first,我们可以将输入变成(batch,序列长度,输入维数)

dropout 表示除了最后一层之外都引入一个dropout

bidirectional 表示双向LSTM,也就是序列从左往右算一次,从右往左又算一次,这样就可以两倍的输出

3

第一步首先是将传入的数据$x_t$和前面输出的$h_{t-1}$,$x_t$是输入的维数,比如是K,$h_{t-1}$是网络的输出维数,比如M,因为输出的维度是M,权重w的维数就是(M, M)和(M, K),b的维数就是(M, 1)和(M, 1),最后经过sigmoid激活函数,得到的f的维数是(M, 1)。

对于第一个数据,需要定义初始的h_0和c_0,所以nn.lstm()的输入Inputs:input, (h_0, c_0),表示输入的数据以及h_0和c_0,这个可以自己定义,如果不定义,默认就是0

4

第二步也是差不多的操作,只不多是另外两个权重加上不同的激活函数,一个使用的是sigmoid,一个使用的是tanh,得到的输出$i_t$和$\tilde{C}_t$都是(M, 1)。

5

接着这个乘法是矩阵每个位置对应相乘,然后将两个矩阵加起来,得到的输出$C_t$是(M, 1)。

6

最后一步得到的$o_t$也是(M, 1),然后$C_t$经过激活函数tanh,再和$o_t$每个位置相乘,得到的输出$h_t$也是(M, 1)。

最后得到的输出就是$h_t$和$C_t$,维数分别都是(M, 1),而输入$x_t$维数都是(K, 1)。

lstm = nn.LSTM(10, 30, batch_first=True)

可以通过这样定义一个一层的LSTM输入是10,输出是30

lstm.weight_hh_l0.size()
lstm.weight_ih_l0.size()
lstm.bias_hh_l0.size()
lstm.bias__ih_l0.size()

可以分别得到权重的维数,注意之前我们定义的4个weights被整合到了一起,比如这个lstm,输入是10维,输出是30维,相对应的weight就是30x10,这样的权重有4个,然后pytorch将这4个组合在了一起,方便表示,也就是lstm.weight_ih_l0,所以它的维数就是120x10

我们定义一个输入

x = Variable(torch.randn((50, 100, 10)))
h0 = Variable(torch.randn(1, 50, 30))
c0 = Variable(torch.randn(1, 50 ,30))

x的三个数字分别表示batch_size为50,序列长度为100,每个数据维数为10

h0的第二个参数表示batch_size为50,输出维数为30,第一个参数取决于网络层数和是否是双向的,如果双向需要乘2,如果是多层,就需要乘以网络层数

c0的三个参数和h0是一致的

out, (h_out, c_out) = lstm(x, (h0, c0))

这样就可以得到网络的输出了,和上面讲的一致,另外如果不传入h0和c0,默认的会传入相同维数的0矩阵

这就是我们如何在pytorch上使用RNN的基本操作了,了解完最基本的参数我们才能够使用其来做应用。

本文参考的资料来自如下博客

更多的RNN的应用可以看这个资源


本文代码已经上传到了github

欢迎查看我的知乎专栏,深度炼丹

欢迎访问我的博客

相关文章

  • pytorch快速入门

    Tensor Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组...

  • Pytorch学习笔记(2) Autograd(自动求导) ——

    本文是Pytorch快速入门第二部分,主要学习记录,主要翻译Pytorch Autograd部分教程原文 auto...

  • Pytorch

    视频教程:莫烦B站Pytorch动态神经网络 参考教程:PyTorch 深度学习:60分钟快速入门torch.au...

  • PyTorch 60 分钟入门教程

    PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程http://pytorchchina...

  • pytorch学习路径

    微信公众号:诗人藏夜里 参考了黄海广老师的[pytorch快速入门资料](https://zhuanlan.zhi...

  • 10分钟快速入门PyTorch (5)

    前面一节我们讲了cnn以及如何使用pytorch实现简单的多层卷积神经网络,下面我们将进入rnn,对于rnn我也涉...

  • 新书:PyTorch深度学习入门与实战

    本书主要内容如下: 《PyTorch 深度学习入门与实战(案例视频精讲)》是基于 PyTorch 的深度学习入门和...

  • PyTorch:学习资源

    PyTorch学习资源整理: 最先看,PyTorch官方60min入门指南 对照着看,PyTorch深度学习:60...

  • 2018-04-18-pytorch框架的学习

    No.1 入门教程 (1)本站 PyTorch 教程目录 - PyTorch Tutorial (2)pytror...

  • 循环神经网络pytorch实现

    RNN pytorch 实现 LSTM 输入门: 遗忘门: 输出门: pytorch 实现 GRU 更新门: 候选...

网友评论

  • ScotCris:很赞,学长的教程都比较贴近代码,很适合有了基础知识后由理论往实践迁移时学习。

本文标题:10分钟快速入门PyTorch (5)

本文链接:https://www.haomeiwen.com/subject/lmldxxtx.html