美文网首页我爱编程
特征选择步骤

特征选择步骤

作者: 五长生 | 来源:发表于2018-03-24 09:08 被阅读41次

转载自https://machinelearningmastery.com/an-introduction-to-feature-selection/

1、Do you have domain knowledge? If yes, construct a better set of ad hoc”” features
2、Are your features commensurate? If no, consider normalizing them.
3、Do you suspect interdependence of features? If yes, expand your feature set by constructing conjunctive features or products of features, as much as your computer resources allow you.
4、Do you need to prune the input variables (e.g. for cost, speed or data understanding reasons)? If no, construct disjunctive features or weighted sums of feature
5、Do you need to assess features individually (e.g. to understand their influence on the system or because their number is so large that you need to do a first filtering)? If yes, use a variable ranking method; else, do it anyway to get baseline results.
6、Do you need a predictor? If no, stop
7、Do you suspect your data is “dirty” (has a few meaningless input patterns and/or noisy outputs or wrong class labels)? If yes, detect the outlier examples using the top ranking variables obtained in step 5 as representation; check and/or discard them.
8、Do you know what to try first? If no, use a linear predictor. Use a forward selection method with the “probe” method as a stopping criterion or use the 0-norm embedded method for comparison, following the ranking of step 5, construct a sequence of predictors of same nature using increasing subsets of features. Can you match or improve performance with a smaller subset? If yes, try a non-linear predictor with that subset.
9、Do you have new ideas, time, computational resources, and enough examples? If yes, compare several feature selection methods, including your new idea, correlation coefficients, backward selection and embedded methods. Use linear and non-linear predictors. Select the best approach with model selection
10、Do you want a stable solution (to improve performance and/or understanding)? If yes, subsample your data and redo your analysis for several “bootstrap”.

相关文章

  • 特征选择步骤

    转载自https://machinelearningmastery.com/an-introduction-to-...

  • 用于分类的决策树的理解

    决策树学习的三个步骤:特征选择,决策树生成,决策树剪枝。 特征选择 特征选择在于选取对训练数据具有分类能力的特征。...

  • 机器学习入门(猴子live)

    数据处理步骤 获得数据预处理数据特征提取特征选择和特征降维 数据预处理6个步骤 1.选择子集2.列名重命名3.缺失...

  • 一文归纳Python特征选择(全)

    1 特征选择的目的 机器学习中特征选择是一个重要步骤,以筛选出显著特征、摒弃非显著特征。这样做的作用是: 减少特...

  • 6.10  特征处理

    整理一下建模前的步骤:特征提取,特征转换,特征选择对机器学习(传统机器学习和深度学习)建模都是非常重要的环节。 补...

  • 小白的情感分析实战

    大神连接: 机器学习方法进行情感分析(详细步骤) sklearn- SelectKBest 特征选择---Sele...

  • PCA 算法

    算法步骤 样本归一化 求解协方差矩阵 求解特征值和特征向量 选择主要成分 转换特征降维的数据 降维的优化目标:将一...

  • 决策树: 特征选择之寻找最优划分

    前言决策树算法的三个步骤:特征选择、决策树生成、决策树剪枝。其中特征选择要解决的核心问题就是:每个节点在哪个维度上...

  • 决策树

    例子1 打网球 抓重点:每个特征的影响力 例子2 选择属性 例子3 特征选择特征选择2特征选择3随机森林选择特征...

  • 3. 机器学习之特征选择

    1. 特征选择( Feature Selection ) 1.1 特征选择的定义 特征选择( Feature ...

网友评论

    本文标题:特征选择步骤

    本文链接:https://www.haomeiwen.com/subject/lptqcftx.html