美文网首页
OpenCV+Python FLANN特征匹配与单应性变换(Ho

OpenCV+Python FLANN特征匹配与单应性变换(Ho

作者: 音符纸飞机 | 来源:发表于2018-10-13 22:22 被阅读168次

    OpenCV官方文档

    FLANN邻近搜索

    FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。
    使用flann的搜索,整体来说分为两步,一是建立索引,二是搜索。
    FLANN相关文章

    单应性变换(Homography)

    一个平面到另一个平面的映射关系。
    两张图分别有四个相对位置相同的点,Homography就是一个变换(3*3矩阵),将一张图中的点映射到另一张图中对应的点。


    homography

    RANSAC

    算法详解wiki
    基础概念博文
    相关博文
    随机一致性采样RANSAC是一种鲁棒的模型拟合算法,能够从有外点的数据中拟合准确的模型。

    MIN_MATCH_COUNT = 10
    img1 = cv2.imread('train.jpg', 0)  # queryImage
    img2 = cv2.imread('test.jpg', 0)  # trainImage
    # Initiate SIFT detector
    sift = cv2.xfeatures2d.SIFT_create()
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    # kdtree建立索引方式的常量参数
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    # checks指定索引树要被遍历的次数
    search_params = dict(checks=50)
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    # store all the good matches as per Lowe's ratio test.
    good = []
    for m, n in matches:
        if m.distance < 0.7 * n.distance:
            good.append(m)
    if len(good) > MIN_MATCH_COUNT:
        src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
        matchesMask = mask.ravel().tolist()
        h, w = img1.shape
        pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
        dst = cv2.perspectiveTransform(pts, M)
        img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
    else:
        print("Not enough matches are found - %d/%d" % (len(good), MIN_MATCH_COUNT))
        matchesMask = None
    draw_params = dict(matchColor=(0, 255, 0),  # draw matches in green color
                       singlePointColor=None,
                       matchesMask=matchesMask,  # draw only inliers
                       flags=2)
    img3 = cv2.drawMatches(img1, kp1, img2, kp2, good, None, **draw_params)
    plt.imshow(img3, 'gray'), plt.show()
    
    效果图

    ·

    相关文章

      网友评论

          本文标题:OpenCV+Python FLANN特征匹配与单应性变换(Ho

          本文链接:https://www.haomeiwen.com/subject/lrraaftx.html