勿在浮沙筑高台
请仔细研读下列书籍
初阶课程
概率与统计
-
[1] Larry Wasserman. All of Statistics
All of Statistics
-
[2] Morris H. DeGroot, Mark J. Schervish. Probability and Statistics
image.png
-
[3] T. W. Anderson John Wiley An Introduction to Multivariate Statistical Analysis
image.png
-
[4] R. J. Muirhead . Aspects of Multivariate Statistical Theory
image.png
线性代数
-
[1] Gilbert Strang. Introduction to Linear Algebra
image.png
-
[2] Trefethen N. Lloyd,David Bau lll.Numerical Linear Algebra
image.png
机器学习课程
-
[1] John D. Kelleher,Brian Mac Namee. Fundamentals of Machine Learning for Predictive Data Analytics
image.png
-
[2] Andrew R. Webb,Keith D. Copsey. Statistical Pattern Recognition
image.png
-
[3] Trevor HastieRobert TibshiraniJerome Friedman Elements of statistical learning
image.png
中阶课程
数值优化
-
[1] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.
image.png
-
[2] Timothy Sauer. Numerical Analysis
image.png
算法课程
- Michael Mitzenmacher,Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
Analysis
image.png
程序设计方面
- David B. Kirk,Wenmei W. Hwu. Programming
Massively Parallel Processors: A Hands-on Approach, Second Edition
image.png
高阶课程
-
Trefethen N. Lloyd and David Bau III. Numerical linear algebra. SIAM, 1997.
image.png
-
Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
image.png
Algorithms. Cambridge Press, 2014.
-
Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press.
image.png
-
Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.
image.png -
Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
image.png
Probabilistic Analysis. Cambridge University Press, 2005.
-
Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1986.
image.png
-
George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth Group,2002.
image.png
-
Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
image.png
and Examples, second edition. Springer, 2006.
进阶课程
-
[1] Shai Shalew-Shwartz and Shai Ben-David. Understanding Machine Learning: from Theory
image.png
to Algorithms. Cambridge University Press. 2014
-
[2] George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth
Group, 2002.
-
[3] Andrew Gelman et al. Bayesian Data Analysis, Third edition. CRC, 2014.
image.png
-
[4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
image.png
Techniques. MIT, 2009.
-
[5] Jonathan M. Borwein and Adrian S. Lewis. **Convex Analysis and Nonlinear Optimization:
image.png
Theory and Examples**, second edition. Springer, 2006.
-
[6] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundation of Data Science. 2016.
-
[7] Richaerd S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT, 2012.
image.png
-
[8] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
image.png
Sons, 2012.
网友评论