北大张志华推荐经典机器学习书

作者: readilen | 来源:发表于2019-07-22 11:34 被阅读5次

    勿在浮沙筑高台
    请仔细研读下列书籍

    初阶课程

    概率与统计

    • [1] Larry Wasserman. All of Statistics

      All of Statistics
    • [2] Morris H. DeGroot, Mark J. Schervish. Probability and Statistics

      image.png
    • [3] T. W. Anderson John Wiley An Introduction to Multivariate Statistical Analysis

      image.png
    • [4] R. J. Muirhead . Aspects of Multivariate Statistical Theory

      image.png

    线性代数

    • [1] Gilbert Strang. Introduction to Linear Algebra

      image.png
    • [2] Trefethen N. Lloyd,David Bau lll.Numerical Linear Algebra

      image.png

    机器学习课程

    • [1] John D. Kelleher,Brian Mac Namee. Fundamentals of Machine Learning for Predictive Data Analytics

      image.png
    • [2] Andrew R. Webb,Keith D. Copsey. Statistical Pattern Recognition

      image.png
    • [3] Trevor HastieRobert TibshiraniJerome Friedman Elements of statistical learning

      image.png

    中阶课程

    数值优化

    • [1] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.

      image.png
    • [2] Timothy Sauer. Numerical Analysis

      image.png

    算法课程

    • Michael Mitzenmacher,Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
      Analysis

      image.png

    程序设计方面

    • David B. Kirk,Wenmei W. Hwu. Programming
      Massively Parallel Processors: A Hands-on Approach
      , Second Edition
      image.png

    高阶课程

    1. Trefethen N. Lloyd and David Bau III. Numerical linear algebra. SIAM, 1997.

      image.png
    2. Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
      Algorithms
      . Cambridge Press, 2014.

      image.png
    3. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press.

      image.png
    4. Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.


      image.png
    5. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
      Probabilistic Analysis
      . Cambridge University Press, 2005.

      image.png
    6. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1986.

      image.png
    7. George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth Group,2002.

      image.png
    8. Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
      and Examples
      , second edition. Springer, 2006.

      image.png

    进阶课程

    • [1] Shai Shalew-Shwartz and Shai Ben-David. Understanding Machine Learning: from Theory
      to Algorithms
      . Cambridge University Press. 2014

      image.png
    • [2] George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth
      Group, 2002.

    image.png
    • [3] Andrew Gelman et al. Bayesian Data Analysis, Third edition. CRC, 2014.

      image.png
    • [4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
      Techniques
      . MIT, 2009.

      image.png
    • [5] Jonathan M. Borwein and Adrian S. Lewis. **Convex Analysis and Nonlinear Optimization:


      image.png

    Theory and Examples**, second edition. Springer, 2006.

    • [6] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundation of Data Science. 2016.

    • [7] Richaerd S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT, 2012.

      image.png
    • [8] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
      Sons, 2012.

      image.png

    相关文章

      网友评论

        本文标题:北大张志华推荐经典机器学习书

        本文链接:https://www.haomeiwen.com/subject/lvcilctx.html