场景
提供接口服务的API负载均衡在了7台机器上,要保证定时任务只在一台机器上跑,因为有些定时任务不能同时进行,并且多台机器同时执行定时任务也浪费资源,下面来讲讲如何实现定时任务单点运行。
方案一:根据机器的IP来限制
因为部署服务的7台机器ip是已知的,那么就可以通过ip来限制哪台机器上的应用可以跑定时任务,获取本服务器或者客户端ip方法,请移步至: Java获取客户端、本机IP
@Component
@Slf4j
public class RegularTask {
@Lazy
@Scheduled(cron = "")
public void send() {
//获取本台服务器ip
String ip = IPUtil.getLocalIP();
//允许执行定时任务的ip强烈建议配置在数据库中,做成可配置化,不要写死
String allowIp = PropertiesUtil.get("RUN_TASK_IP");
//ip不匹配直接return
if (allowIp.indexOf(ip) == -1) {
log.info("……");
return;
}
//TODO deal with task
}
}
方案二:分布式锁实现
让7台机器上的应用各自去争取同一把锁,谁抢到了锁就让谁执行,实现方式可以使用zookeeper或者redis,基于redis实现分布式锁、基于zookeeper实现分布式锁。比如redis实现分布式锁的部分代码:
@Component
public class RegularTask {
@Autowired
private JedisPool jedisPool;
@Lazy
@Scheduled(cron = "")
public void send() {
Jedis jedis =null;
try {
jedis = jedisPool.getResource();
boolean isLock = this.tryLock(jedis, "lock_ip_key", RandomStringUtils.randomNumeric(16), 1800); //过期时间为30min
if (isLock) {
//TODO do task
}
}catch (Exception e){
log.error("");
}finally {
if(jedis!=null){
jedis.close();
}
}
}
private static final String LOCKED_SUCCESS = "OK";
private static final String NX = "NX";
private static final String EXPIRE_TIME = "EX";
public static boolean tryLock(Jedis jedis, String lockKey, String uniqueId, long expireTime) {
String result = jedis.set(lockKey, uniqueId, NX, EXPIRE_TIME, expireTime);
return LOCKED_SUCCESS.equals(result);
}
}
方案三:基于zookeeper的master选举
利用zookeeper来实现Master选举,只有Master机器(leader)上能执行定时任务。分布式机器同时在zookeeper中的同一节点下创建节点,zookeeper保证了只有一个能创建成功(临时节点),Curator里面就封装了这些操作。选举分为Leader Latch和Leader Election两种选举方案,这里使用Leader Latch实现。更多的关于zookeeper客户端curator,请移步这里:Zookeeper开源客户端Curator之Master/Leader选举
<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>2.4.1</version>
</dependency>
import org.apache.curator.RetryPolicy;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.leader.LeaderLatch;
import org.apache.curator.retry.ExponentialBackoffRetry;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Lazy;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import java.io.IOException;
@Component
public class RegularTask {
private static final Logger log = LoggerFactory.getLogger(RegularTask.class);
//zookeeper集群,实例数大于等于3
private static final String ZOOKEEPER_STR = "10.25.142.55:2181,10.48.24.36:2181,10.48.24.36:2182,10.48.124.36:2181,10.48.125.36:2181";
private static CuratorFramework curatorFramework;
private static LeaderLatch leaderLatch;
static {
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);
curatorFramework = CuratorFrameworkFactory.newClient(ZOOKEEPER_STR, retryPolicy);
curatorFramework.start();
leaderLatch = new LeaderLatch(curatorFramework, "/regulartask");
try {
leaderLatch.start();
} catch (Exception e) {
log.error("LeaderLatch start error:{}", e);
}
}
@Lazy
@Scheduled(cron = "××")
public void send() {
try {
//判断是否为master
if (!leaderLatch.hasLeadership()) {
log.info("current mechine is not a leader");
return;
}
//TODO 定时任务逻辑
} catch (Exception e) {
log.error("regulartask run error:{}", e);
} finally {
try {
if (leaderLatch != null) {
leaderLatch.close();
}
} catch (IOException e) {
log.error("leaderLatch close error:{}", e);
e.printStackTrace();
}
}
}
}
我们项目中使用的就是zookeeper的master选举实现的,可靠,稳定,线上还没出现过问题!
备注:在我的实际项目中是通过更新数据库执行配置参数来抢占执行权,谁先更新掉谁就执行,后续实例在检测执行配置参数时会查询到已被占用就会直接返回。
原文可见:分布式环境下定时任务单点运行
网友评论