美文网首页Tools我爱编程
TensorFlow CPU环境 SSE/AVX/FMA 指令集

TensorFlow CPU环境 SSE/AVX/FMA 指令集

作者: iccccing | 来源:发表于2017-06-01 22:51 被阅读14422次

    TensorFlow CPU环境 SSE/AVX/FMA 指令集编译

    sess.run()出现如下Warning

    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.

    # 通过pip install tensorflow 来安装tf在 sess.run() 的时候可能会出现
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
    

    这说明你的machine支持这些指令集但是TensorFlow在编译的时候并没有加入这些指令集,需要手动编译才能够介入这些指令集。

    # 1. 下载最新的 TensorFlow
    $ git clone https://github.com/tensorflow/tensorflow
    
    # 2. 安装 bazel
    # mac os 
    $ brew install bazel
    
    # ubuntu 
    $ sudo apt-get update && sudo apt-get install bazel
    
    # Windows
    $ choco install bazel
    
    # 3. Install TensorFlow Python dependencies
    # 如果使用的是Anaconda这部可以跳过
    
    # mac os
    $ pip install six numpy wheel 
    $ brew install coreutils # 安装coreutils for cuda
    $ sudo xcode-select -s /Applications/Xcode.app # set build tools
    
    # ubuntu
    sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel
    sudo apt-get install libcupti-dev
    
    # 4. 开始编译TensorFlow
    
    # 4.1 configure
    $ cd tensorflow # cd to the top-level directory created
    # configure 的时候要选择一些东西是否支持,这里建议都选N,不然后面会包错,如果支持显卡,就在cuda的时候选择y
    $ ./configure # configure
    
    # 4.2 bazel build
    # CUP-only 
    $ bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
    
    # GPU support
    bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
    
    # 4.3生成whl文件
    bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
    
    # 5 安装刚刚编译好的pip 包
    # 这里安装的时候官方文档使用的是sudo命令,如果是个人电脑,不建议使用sudo, 直接pip即可。
    $ pip install /tmp/tensorflow_pkg/tensorflow-{version}-none-any.whl
    
    # 6 接下来就是验证你是否已经安装成功
    $ python -c "import tensorflow as tf; print(tf.Session().run(tf.constant('Hello, TensorFlow')))"
    # 然后你就会看到如下输出
    b'Hello, TensorFlow'
    
    # 恭喜你,成功编译了tensorflow,Warning也都解决了!
    

    报错解决

    Do you wish to build TensorFlow with MKL support? [y/N] y
    MKL support will be enabled for TensorFlow
    Do you wish to download MKL LIB from the web? [Y/n] y
    Darwin is unsupported yet
    # 这里MKL不支持Darwin(MAC),因此要选择N
    
    ERROR: /Users/***/Documents/tensorflow/tensorflow/core/BUILD:1331:1: C++ compilation of rule '//tensorflow/core:lib_hash_crc32c_accelerate_internal' failed: cc_wrapper.sh failed: error executing command external/local_config_cc/cc_wrapper.sh -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -fcolor-diagnostics -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG ... (remaining 32 argument(s) skipped): com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 1.
    clang: error: no such file or directory: 'y'
    clang: error: no such file or directory: 'y'
    
    # 这里是因为在configure的时候有些包不支持但是选择了y,因此记住一点所有的都选n
    

    Reference

    [1]: https://www.tensorflow.org/install/install_sources

    相关文章

      网友评论

      • 拂_7eec:请问在windows10系统中,使用的pycharm运行时出现这种问题,上面的命令行不能执行怎么办?
        iccccing:# Windows
        $ choco install bazel
        其实都是一样的,区别就在于bazel的安装方式不同。下面是一篇windows安装bazel的说明,你可以看看
        https://docs.bazel.build/versions/master/install-windows.html
      • 20050710212:第3步,Anaconda可以跳过。那么第5步,Anaconda是不是需要到对应的虚拟环境中安装?
        iccccing:可以安装到虚拟环境,也可以安装到本地的环境,建议个人电脑,常用的话就安装到本地的环境中
        iccccing:到第五步就可以安装到本地的任何地方了
      • Mrs_凡小姐:求问~如果用的pycharm 这句应该怎么改呢
        $ sudo xcode-select -s /Applications/Xcode.app:flushed:
        Mrs_凡小姐:@JiaBoos 好的,谢谢~
        iccccing:$ sudo xcode-select -s /Applications/Xcode.app # set build tools
        这句话的功能是设置编译工具,如果是mac系统,只需要在命令行里输入这条命令,然后执行即可,和pycharm没有实际关系。
      • 远哥制造:补充一点:
        $ sudo xcode-select -s /Application/Xcode.app # set build tools
        应该改为:
        $ sudo xcode-select -s /Applications/Xcode.app # set build tools
        吧。
        赫本iii:自动补全的习惯是运维具备的 别COPY就好哈哈
        远哥制造:@JiaBoos 其实谷歌官方文档这里也写错了……
        iccccing:是的,这个地方我少写了一个“s”,谢谢远哥指出!原文已修改!
      • 远哥制造:请问如何查看自己电脑显卡是否受支持?
        iccccing:可以去 nvudia 官网查看,https://developer.nvidia.com/cuda-gpus,如果不支持可以直接使用CPU,一样会有所提速
      • iccccing:自己盖楼:smile:

      本文标题:TensorFlow CPU环境 SSE/AVX/FMA 指令集

      本文链接:https://www.haomeiwen.com/subject/mnkyfxtx.html