动态规划法(四)0-1背包问题(0-1 Knapsack Pro

作者: 山阴少年 | 来源:发表于2018-06-02 20:33 被阅读9次

  继续讲故事~~
  转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了。这天晚上,妈妈正在耐心地帮丁丁收拾行李。家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编号、重要、价值如下表所示:

妈妈想要在袋子所能承受的范围内,使得行李的价值最大,并且每件行李只能选择带或者不带。这下妈妈可犯难了,虽然收拾行李不在话下,但是想要解决这个问题,那就不是她的专长了。于是,她把这件事告诉了丁丁。
  丁丁听了,想起了几天前和小连一起解决的子集和问题(subset sum problem),他觉得这个背包问题(其实是0-1背包问题)和子集和问题有很多类似之处,应该也是用动态规划法来解决。有个这个想法,他就立马拿出稿纸开始推演起来:
  假设背包总的承受重要为W, 总的行李j件数为n,行李的重量列表为w, 价值的列表为v。 假设用dp(i,j)表示用前i个物体,总重要不超过j千克,且价值最大的情况。则有以下情况:

  • 若第i件行李的重要w[i] > j, 则不考虑第i件行李,即dp(i,j)=dp(i-1,j).
  • 若第i件行李的重要w[i] <= j, 则有两种情况: 一种不放入第i件行李,则dp(i,j)=dp(i-1,j); 另一种情况,放入第i件行李,则dp(i,j)=d(i-1, j-w[i])+v[i]。 应该选取两者之间的最大值,即dp(i,j)=max{dp(i-1,j), dp(i-1, j-w[i])+v[i]}。

该问题的子结构有了。那么,接下来,只需要考虑初始值即可:

对于任意的i,j, 有dp(i,0)=dp(0,j)=0.

这样他就完整地描述了该背包问题的算法。于是,他在自己的电脑上迅速地写下了如下的Python代码:

# dynamic programming in 0-1 Knapsack Problem
import numpy as np

# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
    # create (n+1)*(W+1) table initialized with all 0
    dp = np.array([[0]*(W+1)]*(n+1))

    # using DP to solve 0-1 Knapsack Problem
    for i in range(1, n+1):
        for j in range(1, W+1):
            # if ith item's weight is bigger than j, then do nothing
            if w[i-1] > j:
                dp[i,j] = dp[i-1, j]
            else: # compare the two situations: putt ith item in or not
                dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])

    return dp[n][W] # maximum value of 0-1 Knapsack Problem

# test
W = 20
w = (1, 2, 5, 6, 7, 9)
v = (1, 6, 18, 22, 28, 36)
n = len(w)

t = Knapsack_01(n, W, w, v)
print('max value : %s'%t)

输出结果如下:

max value : 76

  最大的价值是得到了,可是应该选取哪几件行李的?丁丁想到了子集和问题,选取行李即相当于选取价值集合的一个子集,使得它们的和为最大价值。于是,代码就变成了:

# dynamic programming in 0-1 Knapsack Problem
import numpy as np

# n: number of objects
# W: total weight
# w: list of weight of each object
# v: list of value of each object
# return: maximum value of 0-1 Knapsack Problem
def Knapsack_01(n, W, w, v):
    # create (n+1)*(W+1) table initialized with all 0
    dp = np.array([[0]*(W+1)]*(n+1))

    # using DP to solve 0-1 Knapsack Problem
    for i in range(1, n+1):
        for j in range(1, W+1):
            # if ith item's weight is bigger than j, then do nothing
            if w[i-1] > j:
                dp[i,j] = dp[i-1, j]
            else: # compare the two situations: putt ith item in or not
                dp[i,j] = max(dp[i-1, j], v[i-1] + dp[i-1, j-w[i-1]])

    return dp[n][W] # maximum value of 0-1 Knapsack Problem

# using DP to solve subset sum problem
def isSubsetSum(v, n, max_value):
    # The value of subset[i, j] will be
    # true if there is a subset of
    # set[0..j-1] with sum equal to i
    subset = np.array([[True]*(max_value+1)]*(n+1))

    # If sum is 0, then answer is true
    for i in range(0, n+1):
        subset[i, 0] = True

    # If sum is not 0 and set is empty,
    # then answer is false
    for i in range(1, max_value+1):
        subset[0, i] = False

    # Fill the subset table in bottom-up manner
    for i in range(1, n+1):
        for j in range(1, max_value+1):
            if j < v[i-1]:
                subset[i, j] = subset[i-1, j]
            else:
                subset[i, j] = subset[i-1, j] or subset[i-1, j-v[i-1]]

    if subset[n, max_value]:
        sol = []
        # using backtracing to find the solution
        i = n
        while i >= 0:
            if subset[i, max_value] and not subset[i-1, max_value]:
                sol.append(v[i-1])
                max_value -= v[i-1]
            if max_value == 0:
                break
            i -= 1
        return sol
    else:
        return []

def main():
    # test
    W = 20
    w = (1, 2, 5, 6, 7, 9)
    v = (1, 6, 18, 22, 28, 36)
    n = len(w)

    max_value = Knapsack_01(n, W, w, v)
    sol = isSubsetSum(v, n, max_value)

    items = [v.index(i) for i in sol]

    print('Max value : %s'%max_value)
    print('Chosen items: %s'%items)

main()

输出结果如下:

Max value : 76
Chosen items: [5, 3, 2]

因此,在妈妈的这个问题中,能达到的最大价值为76, 应该选取第2,3,5件行李。
  解决该问题后,丁丁立马把结果和解答的过程告诉了妈妈。妈妈虽然没有听懂,但是确信这就是正确答案,同时也深深地为自己的儿子感到自豪,只是,心里总是有点不舍。她语重心长地对丁丁说道:“大城市不比我们乡下,要时刻注意自己的安全,同时,也不要过分炫耀自己的能力,要谦虚做人,谨慎行事。”丁丁点点了,其实,他也舍不得离开家,离开妈妈,但是,毕竟他想要去看看外面的世界~~
  未完待续~~
注意:本人现已开通两个微信公众号: 用Python做数学(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

相关文章

  • 动态规划法(四)0-1背包问题(0-1 Knapsack Pro

      继续讲故事~~  转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了。这天晚上,妈妈正在耐心地帮丁丁收拾...

  • Algorithm进阶计划 -- 动态规划(下)

    经典动态规划背包问题最长子序列问题 1. 背包问题 1.1 0-1 背包问题 0-1 背包问题,描述如下: 上面...

  • 算法-动态规划-背包问题

    背包问题是基础的动态规划问题,包含了0-1背包,完全背包,多重背包等。 0-1背包 存在容量为 的背包 , 件体...

  • 背包问题

    背包问题属于典型的动态规划问题。这里我们将详细介绍0-1背包,完全背包和多重背包问题 一、 0-1背包 有N件物品...

  • (python实现)购物单问题

    购物单问题实际上是0-1问题,在解决这个问题之前,要理解0-1背包问题。可以自己百度或者阅读我对0-1背包问题的理...

  • 动态规划

    0-1背包问题 自己实现的0-1背包问题的动态规划解法,先贴上吧,动态规划原理解释有空再写。

  • 背包问题

    1、前言 背包问题是典型的动态规划问题,它有非常多的类型,本文讨论最常见的0-1背包问题 0-1背包问题描述:有一...

  • 编程

    今天用0-1算法,编写了背包问题!

  • LeetCode 0-1 Knapsack 背包问题&相

    关于我的 Leetcode 题目解答,代码前往 Github:https://github.com/chenxia...

  • 数据结构与算法笔记day23:动态规划

    1初识动态规划 这节课的内容不涉及动态规划的理论,而是通过两个例子:0-1背包问题、0-1背包问题升级...

网友评论

    本文标题:动态规划法(四)0-1背包问题(0-1 Knapsack Pro

    本文链接:https://www.haomeiwen.com/subject/mntdsftx.html