让我们首先了解什么是三体问题。三体问题(或 3BP)是更广泛的n体问题的特例,它涉及预测天体在彼此引力影响下的运动。与更简单的二体问题 (2BP) 不同,三体问题没有封闭形式的解。这意味着必须使用初始条件(位置和速度)和数值方法来估计物体的运动。对于实际应用,3BP 可以专注于围绕两个较大质量(也称为初选)运行的卫星的运动;这些可能是卫星、行星或恒星。
一颗卫星在两个较大的主星影响下的运动通常是混乱的,这意味着该运动很难预测。这就是我们使用现代数值方法尽可能准确地估计/预测此运动的原因。为了估计 3BP 运动,需要创建一个模型,其中涉及使用牛顿运动定律和牛顿万有引力定律。推导可能难以理解。这是一个更简单的推导,可以帮助您更好地理解后续的推导。现在,开始理解任何物理问题的最佳起点是精心绘制的图表。
3BP图
三体问题上图显示了 3BP 的标准设置。初级表示为m₁和m₂,其中m₁通常是两个质量中较大的一个。卫星(或其运动感兴趣的物体)被标记为m₃。尽管我们将卫星标记为质量 3,但出于实际目的,与主卫星相比,该质量可以忽略不计。由于第三个质量被认为可以忽略不计,因此较大的两个质量的轨道可以被认为是圆锥 (2BP) 轨道。这大大简化了推导。此外,通常研究椭圆和圆形主轨道的特殊情况,称为椭圆限制 3BP (ER3BP) 或圆形限制 3BP (CR3BP)。
考虑到这一点,两个原色的重心或质心可以被认为是一个惯性点,标记为O。该系统中有两个固定在重心的坐标系:一个随原色旋转的旋转坐标系(x-和y -hat)和一个不旋转的惯性坐标系(X-和Y -hat)。在任何给定时间,这两个帧都以角度θ分隔。还有一些位置向量(d₁、d₂、r₁、r₂和ρ) 确定质量相对于惯性重心的位置(对于使用牛顿运动定律很重要)和m₃相对于原色的位置。此推导的相关向量是ρ,因为它将确定卫星的惯性运动。
无量纲化
可怕的词,我知道,但它并不像看起来那么复杂。这不是必要的步骤,但确实可以更轻松地推导 3BP 的运动方程。无量纲化是一种从问题中提取物理维度的方法,对于简化数学表达式很有用。让我们以 3BP 为例。我们可以如下定义质量、长度和时间的无量纲化参数(按照惯例):
image.png
这里,a是两个原色运动的半长轴,G是万有引力常数。这可能还没有意义,所以我将演示如何将地月系统中的一组初始条件(本例中的两个初始条件)无量纲化。该特定系统的无量纲化参数为:
image.png现在,如果我们有一个状态向量(位置和速度向量的组合),那么我们可以按如下方式对其进行无量纲化:
image.png
请注意,无量纲向量没有单位,我们使用维度参数删除了km和s单位。此过程反向进行,因此如果您想重新添加维度,只需乘以或除以L、M或T*。
推导 ER3BP 运动方程
制定三体问题的最后也是最长的一步是推导可忽略质量m₃ 的运动方程。首先,我们需要做一些假设,其中一些已经提到过。我们假设m₃ << m₁和m₂;这意味着m₁和m₂以不受扰动的二体运动(开普勒运动)运动。此外,m₁和m₂被视为质点(这简化了推导)。我们将从m₁和m₂的情况开始推导在围绕重心 (ER3BP) 的椭圆轨道上移动,然后简化此结果以获得 CR3BP。为了方便起见,我们首先定义质量比:
image.png下一步是将牛顿第二运动定律和牛顿万有引力定律应用于m₃。
image.png
上面的等式是m₃的维度加速度(刻度代表二阶时间导数)。现在,无量纲化参数可用于通过将加速度乘以 ( T* )² 再除以L*来从系统中移除物理维度(因为加速度的单位是长度与时间的平方)。
image.png在上面的等式中, ρ向量上方的点代表 ND 二阶时间导数,r₁和r2是 ND 向量。现在我们可以使用运动学来确定m₃的速度和加速度的分量。这对于创建运动方程的标量形式很重要。基本运动学方程或BKE可用于执行此操作:
image.png将 BKE 应用于ρ以获得一阶时间导数或速度
image.png
使用椭圆轨道的 2BP 几何,您可以导出θ的变化率:
image.png这里,h是m₁ - m₂系统的比角动量,R是两个主要质量之间的瞬时距离(在 ER3BP 中随时间变化),e是椭圆轨道的偏心率,E是偏心异常. 现在,再次应用 BKE 以获得加速:
image.png接下来,我们可以结合加速度矢量的两个方程,但首先我们应该从图中定义位置矢量。d₁和d₂是使用二粒子系统质心方程定义的(因为m₃可以忽略不计)。r₁、r₂和ρ可以使用图表和向量减法来定义。
image.png现在,我们可以在第一个加速度方程中使用r₁和r₂的定义,然后将ρ加速度方程组合如下:
image.png组合等式 (1) 和 (2) 的类似项(x -hat、y -hat 和z -hat):
image.png上述方程表示旋转坐标系中m₃的 ER3BP 运动方程。ER3BP 很难与θ项进行数值积分;但是,可以做出假设来简化方程以获得 CR3BP,这是一个更容易集成的问题。在 CR3BP 中,原色围绕质心在圆形轨道上运动。这意味着:
image.png然后,使用这些新假设简化 ER3BP 方程:
image.png这些方程表示m₃的 CR3BP 运动方程。可以对它们进行数值积分,以获得旋转坐标系中m₃的位置和速度的时间历程。请注意,对于 CR3BP,原色将在旋转坐标系中保持静止。为了从 CR3BP 中的旋转矢量获得惯性矢量,我们可以使用以下等式:
image.png此处,x、y和z表示旋转坐标系矢量分量,X、Y和Z表示惯性坐标系矢量分量。
网友评论