美文网首页程序员iOS DeveloperiOS技术交流
iOS 相机流人脸识别(一)-人脸框检测(基于iOS原生)

iOS 相机流人脸识别(一)-人脸框检测(基于iOS原生)

作者: 会飞的大马猴 | 来源:发表于2018-07-31 20:31 被阅读469次
    • 近几年随着移动设备硬件设备越来越优各种美颜相机App应运而生,美颜、瘦脸、添加挂件等等一系列的功能,这其中的原理一定离不开一个关键的技术,那就是人脸识别

    一般的检测流程

    (1) 人脸检测
    检测图片中是否有人脸,或者有多少个人脸,同时会给出人脸的位置信息
    (2) 人脸关键点检测
    第一步我们找出来图中是否有人脸的信息,然后通过人脸的位置,与图片信息,获取人脸的关键点
    (3) 处理信息
    通过关键点,来做一些你需要的东西

    扫盲:什么是关键点

    我们来看一张图


    image.png

    这张图通过 68 个点描述了人脸的轮廓,这 68 个点 就是关键点,也有 5 个点的关键点和其他的规格;

    人脸检测

    今天我们来通过iOS系统本身的AVFoundation 框架 来检测视频流中出现的人脸,并把检测出来的框绘制到视频流中,我们先看一下效果是什么样子的


    IMB_hHOF7t.GIF

    Mars 可能太酷 都检测不到!

    • 原料

    • AVFoundation
    • opencv2.framework 下载opencv2
      ps:opencv 有的库带有iOS 用的一些方法 有的版本不带,我忘记了 大家自行下载查阅,没有的话也可以自己写方法,主要是做转换用的,你的controller的.m文件要换成.mm
    #import "ViewController.h"
    #import <AVFoundation/AVFoundation.h>
    #import <opencv2/imgproc/types_c.h>
    #import <opencv2/imgproc/imgproc_c.h>
    #import <opencv2/imgcodecs/ios.h>
    #import <opencv2/opencv.hpp>
    @interface ViewController ()<AVCaptureVideoDataOutputSampleBufferDelegate, AVCaptureMetadataOutputObjectsDelegate>
    @property (nonatomic,strong) AVCaptureSession *session;
    @property (nonatomic,strong) UIImageView *cameraView;
    @property (nonatomic,strong) dispatch_queue_t sample;
    @property (nonatomic,strong) dispatch_queue_t faceQueue;
    
    @property (nonatomic,copy) NSArray *currentMetadata; //?< 如果检测到了人脸系统会返回一个数组 我们将这个数组存起来
    
    @end
    
    @implementation ViewController
    
    - (void)viewDidLoad {
        [super viewDidLoad];
    
        _currentMetadata = [NSMutableArray arrayWithCapacity:0];
       
        [self.view addSubview: self.cameraView];
        
        _sample = dispatch_queue_create("sample", NULL);
        _faceQueue = dispatch_queue_create("face", NULL);
        
        NSArray *devices = [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo];
        AVCaptureDevice *deviceF;
        for (AVCaptureDevice *device in devices )
        {
            if ( device.position == AVCaptureDevicePositionFront )
            {
                deviceF = device;
                break;
            }
        }
        
        AVCaptureDeviceInput*input = [[AVCaptureDeviceInput alloc] initWithDevice:deviceF error:nil];
        AVCaptureVideoDataOutput *output = [[AVCaptureVideoDataOutput alloc] init];
        
        [output setSampleBufferDelegate:self queue:_sample];
        
        AVCaptureMetadataOutput *metaout = [[AVCaptureMetadataOutput alloc] init];
        [metaout setMetadataObjectsDelegate:self queue:_faceQueue];
        self.session = [[AVCaptureSession alloc] init];
        
        
        [self.session beginConfiguration];
        if ([self.session canAddInput:input]) {
            [self.session addInput:input];
        }
        
        if ([self.session canSetSessionPreset:AVCaptureSessionPreset640x480]) {
            [self.session setSessionPreset:AVCaptureSessionPreset640x480];
        }
        if ([self.session canAddOutput:output]) {
            [self.session addOutput:output];
        }
        
        if ([self.session canAddOutput:metaout]) {
            [self.session addOutput:metaout];
        }
        [self.session commitConfiguration];
        
        
        NSString     *key           = (NSString *)kCVPixelBufferPixelFormatTypeKey;
        NSNumber     *value         = [NSNumber numberWithUnsignedInt:kCVPixelFormatType_32BGRA];
        NSDictionary *videoSettings = [NSDictionary dictionaryWithObject:value forKey:key];
        
        [output setVideoSettings:videoSettings];
        
        //这里 我们告诉要检测到人脸 就给我一些反应,里面还有QRCode 等 都可以放进去,就是 如果视频流检测到了你要的 就会出发下面第二个代理方法
        [metaout setMetadataObjectTypes:@[AVMetadataObjectTypeFace]];
        
        AVCaptureSession* session = (AVCaptureSession *)self.session;
        //前置摄像头一定要设置一下 要不然画面是镜像
        for (AVCaptureVideoDataOutput* output in session.outputs) {
            for (AVCaptureConnection * av in output.connections) {
                //判断是否是前置摄像头状态
                if (av.supportsVideoMirroring) {
                    //镜像设置
                    av.videoOrientation = AVCaptureVideoOrientationPortrait;
                    av.videoMirrored = YES;
                }
            }
        }
        [self.session startRunning];
    
    }
    #pragma mark - AVCaptureSession Delegate -
    
    - (void)captureOutput:(AVCaptureOutput *)output didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection
    {
        
        NSMutableArray *bounds = [NSMutableArray arrayWithCapacity:0];
        //每一帧,我们都看一下  self.currentMetadata 里面有没有东西,然后将里面的 
       //AVMetadataFaceObject 转换成  AVMetadataObject,其中AVMetadataObject 的bouns 就是人脸的位置 ,我们将bouns 存到数组中
        for (AVMetadataFaceObject *faceobject in self.currentMetadata) {
            AVMetadataObject *face = [output transformedMetadataObjectForMetadataObject:faceobject connection:connection];
            [bounds addObject:[NSValue valueWithCGRect:face.bounds]];
        }
    }
    
    - (void)captureOutput:(AVCaptureOutput *)output didOutputMetadataObjects:(NSArray<__kindof AVMetadataObject *> *)metadataObjects fromConnection:(AVCaptureConnection *)connection
    {
        //当检测到了人脸会走这个回调
        _currentMetadata = metadataObjects;
    }
    
    
    
    - (UIImage*)imageFromPixelBuffer:(CMSampleBufferRef)p {
        CVImageBufferRef buffer;
        buffer = CMSampleBufferGetImageBuffer(p);
        
        CVPixelBufferLockBaseAddress(buffer, 0);
        uint8_t *base;
        size_t width, height, bytesPerRow;
        base = (uint8_t *)CVPixelBufferGetBaseAddress(buffer);
        width = CVPixelBufferGetWidth(buffer);
        height = CVPixelBufferGetHeight(buffer);
        bytesPerRow = CVPixelBufferGetBytesPerRow(buffer);
        
        CGColorSpaceRef colorSpace;
        CGContextRef cgContext;
        colorSpace = CGColorSpaceCreateDeviceRGB();
        cgContext = CGBitmapContextCreate(base, width, height, 8, bytesPerRow, colorSpace, kCGBitmapByteOrder32Little | kCGImageAlphaPremultipliedFirst);
        CGColorSpaceRelease(colorSpace);
        
        CGImageRef cgImage;
        UIImage *image;
        cgImage = CGBitmapContextCreateImage(cgContext);
        image = [UIImage imageWithCGImage:cgImage];
        CGImageRelease(cgImage);
        CGContextRelease(cgContext);
        
        CVPixelBufferUnlockBaseAddress(buffer, 0);
        
        
        return image;
    }
    
    - (UIImageView *)cameraView
    {
        if (!_cameraView) {
            _cameraView = [[UIImageView alloc] initWithFrame:self.view.bounds];
            //不拉伸
            _cameraView.contentMode = UIViewContentModeScaleAspectFill;
        }
        return _cameraView;
    }
    

    注意的地方

    • 1.output的设置一定在添加之后
    • 2.info.plist 要设置相机权限 Privacy - Camera Usage Description

    现在我们视频流拿到了 但是还没有显示出来,下面我们会通过opencv 将人脸框绘制在视频流上,并通过UIImageView 将 处理后的图像显示出来

    将人脸框绘制到显示的视频流上

    (1). 转换

    我们先写一个方法 将CMSampleBufferRef 转换成 UIImage(其实也可以直接CMSampleBufferRef 转换成cv::Mat)

    - (UIImage*)imageFromPixelBuffer:(CMSampleBufferRef)p {
        CVImageBufferRef buffer;
        buffer = CMSampleBufferGetImageBuffer(p);
        
        CVPixelBufferLockBaseAddress(buffer, 0);
        uint8_t *base;
        size_t width, height, bytesPerRow;
        base = (uint8_t *)CVPixelBufferGetBaseAddress(buffer);
        width = CVPixelBufferGetWidth(buffer);
        height = CVPixelBufferGetHeight(buffer);
        bytesPerRow = CVPixelBufferGetBytesPerRow(buffer);
        
        CGColorSpaceRef colorSpace;
        CGContextRef cgContext;
        colorSpace = CGColorSpaceCreateDeviceRGB();
        cgContext = CGBitmapContextCreate(base, width, height, 8, bytesPerRow, colorSpace, kCGBitmapByteOrder32Little | kCGImageAlphaPremultipliedFirst);
        CGColorSpaceRelease(colorSpace);
        
        CGImageRef cgImage;
        UIImage *image;
        cgImage = CGBitmapContextCreateImage(cgContext);
        image = [UIImage imageWithCGImage:cgImage];
        CGImageRelease(cgImage);
        CGContextRelease(cgContext);
        
        CVPixelBufferUnlockBaseAddress(buffer, 0);
        
        
        return image;
    }
    

    (2).绘制

    我们在继续在 AVCaptureVideoDataOutputSampleBufferDelegate 去处理视频流,已经可以拿到 有关人脸的信息了 我们直接绘制上去就可以了

    - (void)captureOutput:(AVCaptureOutput *)output didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection
    {
        
        NSMutableArray *bounds = [NSMutableArray arrayWithCapacity:0];
        for (AVMetadataFaceObject *faceobject in self.currentMetadata) {
            AVMetadataObject *face = [output transformedMetadataObjectForMetadataObject:faceobject connection:connection];
            [bounds addObject:[NSValue valueWithCGRect:face.bounds]];
        }
       
       //转换成UIImage
        UIImage *image = [self imageFromPixelBuffer:sampleBuffer];
        cv::Mat mat;
        //转换成cv::Mat
        UIImageToMat(image, mat);
        
        for (NSValue *rect in bounds) {
            CGRect r = [rect CGRectValue];
            //画框
            cv::rectangle(mat, cv::Rect(r.origin.x,r.origin.y,r.size.width,r.size.height), cv::Scalar(255,0,0,1));
    
        }
        
        //这里不考虑性能 直接怼Image
        dispatch_async(dispatch_get_main_queue(), ^{
           self.cameraView.image = MatToUIImage(mat);
        });
    }
    

    忘记一个东西 依赖库 大家别忘记 点一波

    image.png

    相关文章

      网友评论

      本文标题:iOS 相机流人脸识别(一)-人脸框检测(基于iOS原生)

      本文链接:https://www.haomeiwen.com/subject/mvgfvftx.html