美文网首页
RAS加解密详解

RAS加解密详解

作者: SevenBy | 来源:发表于2018-04-19 17:45 被阅读17168次
rsa).jpg

1. 什么是RSA

RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法。在了解RSA算法之前,先熟悉下几个术语
根据密钥的使用方法,可以将密码分为对称密码和公钥密码
对称密码:加密和解密使用同一种密钥的方式
公钥密码:加密和解密使用不同的密码的方式,因此公钥密码通常也称为非对称密码。

2. RSA加密

RSA的加密过程可以使用一个通式来表达


image.png

也就是说RSA加密是对明文的E次方后除以N后求余数的过程。就这么简单?对,就是这么简单。
从通式可知,只要知道E和N任何人都可以进行RSA加密了,所以说E、N是RSA加密的密钥,也就是说E和N的组合就是公钥,我们用(E,N)来表示公钥

image.png

不过E和N不并不是随便什么数都可以的,它们都是经过严格的数学计算得出的,关于E和N拥有什么样的要求及其特性后面会讲到。顺便啰嗦一句E是加密(Encryption)的首字母,N是数字(Number)的首字母

3. RSA解密

RSA的解密同样可以使用一个通式来表达


image.png

也就是说对密文进行D次方后除以N的余数就是明文,这就是RSA解密过程。知道D和N就能进行解密密文了,所以D和N的组合就是私钥


image.png

从上述可以看出RSA的加密方式和解密方式是相同的,加密是求“E次方的mod N”;解密是求“D次方的mod N”
此处D是解密(Decryption)的首字母;N是数字(Number)的首字母。

小结下

公钥 (E,N)
私钥 (D,N)
密钥对 (E,D,N)
加密 image.png
解密 image.png

4. 生成密钥对

既然公钥是(E,N),私钥是(D,N)所以密钥对即为(E,D,N)但密钥对是怎样生成的?步骤如下:

  1. 求N
  2. 求L(L为中间过程的中间数)
  3. 求E
  4. 求D

4.1 求N

准备两个质数p,q。这两个数不能太小,太小则会容易破解,将p乘以q就是N


image.png

4.2 求L

L 是 p-1 和 q-1的最小公倍数,可用如下表达式表示


image.png

4.3 求E

E必须满足两个条件:E是一个比1大比L小的数,E和L的最大公约数为1
用gcd(X,Y)来表示X,Y的最大公约数则E条件如下(gcd释义:greatest common divisor>):

1 < E < L
gcd(E,L)=1

之所以需要E和L的最大公约数为1是为了保证一定存在解密时需要使用的数D。现在我们已经求出了E和N也就是说我们已经生成了密钥对中的公钥了。

4.4 求D

数D是由数E计算出来的。D、E和L之间必须满足以下关系:

E*D mod L = 1

只要D满足上述2个条件,则通过E和N进行加密的密文就可以用D和N进行解密。
简单地说条件2是为了保证密文解密后的数据就是明文。
现在私钥自然也已经生成了,密钥对也就自然生成了。
小结下:

求N N= p * q ;p,q为质数
求L L=lcm(p-1,q-1) ;L为p-1、q-1的最小公倍数
求E 1 < E < L,gcd(E,L)=1;E,L最大公约数为1(E和L互质)
求D 1 < D < L,E*D mod L = 1

5 实践下吧

我们用具体的数字来实践下RSA的密钥对对生成,及其加解密对全过程。为方便我们使用较小数字来模拟。

5.1 求N

我们准备两个很小对质数,
p = 17
q = 19
N = p * q = 323

5.2 求L

L = lcm(p-1, q-1)= lcm(16,18) = 144
144为16和18对最小公倍数

5.3 求E

求E必须要满足2个条件:1 < E < L ,gcd(E,L)=1
即1 < E < 144,gcd(E,144) = 1
E和144互为质数,5显然满足上述2个条件
故E = 5

此时公钥=(E,N)= (5,323)

5.4 求D

求D也必须满足2个条件:1 < D < L,E*D mod L = 1
即1 < D < 144,5 * D mod 144 = 1
显然当D= 29 时满足上述两个条件
1 < 29 < 144
5*29 mod 144 = 145 mod 144 = 1
此时私钥=(D,N)=(29,323)

5.5 加密

准备的明文必须时小于N的数,因为加密或者解密都要mod N其结果必须小于N
假设明文 = 123


image.png

5.6 解密

解密后的明文为123。


image.png

至此RSA的算法原理已经讲解完毕

相关文章

  • RAS加解密详解

    1. 什么是RSA RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法。在了解RSA算法之前...

  • RSA加解密

    RSA加解密技术详解 示例源码

  • Flutter AES/RAS 加解密工具类

    因项目需要用到加解密,然后研究了下flutter大部分是用原生实现加解密的,但是这样不是我想要的,后面找资料发现d...

  • 加解密详解

    本文主要介绍移动端的加解密算法的分类、其优缺点特性及应用,帮助读者由浅入深地了解和选择加解密算法。文中会包含算法的...

  • RAS

    新年伊始时,突然想给自己一个具体可行的方式,来达成自己今年的年度目标。只是,这一次,不再只是列一列目标清单,因为对...

  • Java使用RAS加解密 及数字签名的生成

    代码示例:

  • AES 和RSA加解密

    AES 加解密 RSA 加解密

  • RSA算法

    目录 https通信抓包 消息验证 RAS算法 RAS数字签名验证 1. https通信抓包 使用如下命令,我们可...

  • ras 加密

  • RAS加密

网友评论

      本文标题:RAS加解密详解

      本文链接:https://www.haomeiwen.com/subject/mwkwkftx.html