书籍:《Thomas' calculus early transcendentals,13e》
![](https://img.haomeiwen.com/i13709764/216101719d23ff1e.png)
极限记号
![](https://img.haomeiwen.com/i13709764/13c3fb229ed4e701.png)
![](https://img.haomeiwen.com/i13709764/92784e885b043d8c.png)
![](https://img.haomeiwen.com/i13709764/9f88dc888bc75680.png)
![](https://img.haomeiwen.com/i13709764/12f615f195045c0f.png)
![](https://img.haomeiwen.com/i13709764/85c15ebc71583f91.png)
![](https://img.haomeiwen.com/i13709764/8b79ef06805be658.png)
![](https://img.haomeiwen.com/i13709764/29ad063758d2c812.png)
三角不等式
![](https://img.haomeiwen.com/i13709764/1dab41d3961e5a56.png)
单侧极限
![](https://img.haomeiwen.com/i13709764/ca742b5e14c50644.png)
![](https://img.haomeiwen.com/i13709764/f3d1b43668d34342.png)
![](https://img.haomeiwen.com/i13709764/1f1b113b7db4549b.png)
![](https://img.haomeiwen.com/i13709764/a5b6044d87002101.png)
![](https://img.haomeiwen.com/i13709764/0eb79b8b2b8adf81.png)
![](https://img.haomeiwen.com/i13709764/a83de29a4ec7681b.png)
![](https://img.haomeiwen.com/i13709764/f870ded310e2e9ba.png)
![](https://img.haomeiwen.com/i13709764/51e95f86da85a43a.png)
![](https://img.haomeiwen.com/i13709764/da1db608877bfa28.png)
![](https://img.haomeiwen.com/i13709764/fce2ed0e8405088d.png)
![](https://img.haomeiwen.com/i13709764/5bb66c4d26504f4c.png)
![](https://img.haomeiwen.com/i13709764/4ef4fb765de1c8e2.png)
![](https://img.haomeiwen.com/i13709764/b8687fbd904ba236.png)
![](https://img.haomeiwen.com/i13709764/fa88aaa9d6d4e8de.png)
![](https://img.haomeiwen.com/i13709764/b885391cf576d270.png)
渐近线:水平,垂直,斜
斜渐近线
当有理函数f(x)=p(x)/q(x),q(x)≠0.p(x)的阶比q(x)大1,就可以把f(x)表示成一个线性函数+另一个函数,当x-->正负无穷大时,另一个函数为0,则线性函数是函数f(x)的斜渐近线。
![](https://img.haomeiwen.com/i13709764/fa1fc053c2625b79.png)
![](https://img.haomeiwen.com/i13709764/0cd6f2ec644a72dc.png)
书籍:《Thomas' calculus early transcendentals,13e》
极限记号
三角不等式
斜渐近线
当有理函数f(x)=p(x)/q(x),q(x)≠0.p(x)的阶比q(x)大1,就可以把f(x)表示成一个线性函数+另一个函数,当x-->正负无穷大时,另一个函数为0,则线性函数是函数f(x)的斜渐近线。
本文标题:微积分笔记——Chapter2 极限与连续
本文链接:https://www.haomeiwen.com/subject/mxpdfqtx.html
网友评论