美文网首页
对于人工智能核心-向量的理解

对于人工智能核心-向量的理解

作者: 愿记花开不记年 | 来源:发表于2022-02-17 17:27 被阅读0次

    人工智能的初步了解

    机器学习 在知识底库中查询,核心为查询的算法;

    传统意义上我们会在链表、二叉树、数组中查询,但是人工智能中构建了更多维度的底库,包括按图层创建、按小世界创建等等,基于图的算法更迅速 效果好,但构建更复杂。

    而如何识别出结果就是我们要查询的内容,靠的就是距离算法,就是通过在不同的角度判断目标与底库中数据的距离,计算方法包括:

    欧式距离:空间中两点之间的距离

    夹角余弦:角度距离,数据在同一个角度范围内

    汉明距离:差异距离,两个字符要变成同一字符的距离

    杰卡德相似系数:两个集合交集和两集合并集的比

    以上算法成为机器视觉开始的主流算法

    而这其中离不开的就是向量的概念

    刚刚说了创建底库,而底库组成的元素就是向量,越多维的向量标识,则查询的越准确,当然算力需要的也更大。

    汉字的向量的一般维度是100维到300维之间,我们在同一个向量空间表达所有的词,则这个空间就是底库。

    相关文章

      网友评论

          本文标题:对于人工智能核心-向量的理解

          本文链接:https://www.haomeiwen.com/subject/myggkttx.html