- Spark Streaming程序的停止可以是强制停止、异常停止或其他方式停止。
首先我们看StreamingContext的stop()方法
def stop(
stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true)
): Unit = synchronized {
stop(stopSparkContext, false)
}
这里定义了两个参数,stopSparkContext可以通过配置文件定义,接着看接收两个参数的stop方法,代码如下
/**
* Stop the execution of the streams, with option of ensuring all received data
* has been processed.
*
* @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext
* will be stopped regardless of whether this StreamingContext has been
* started.
* @param stopGracefully if true, stops gracefully by waiting for the processing of all
* received data to be completed
*/
def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {
var shutdownHookRefToRemove: AnyRef = null
if (AsynchronousListenerBus.withinListenerThread.value) {
throw new SparkException("Cannot stop StreamingContext within listener thread of" +
" AsynchronousListenerBus")
}
synchronized {
try {
state match {
case INITIALIZED =>
logWarning("StreamingContext has not been started yet")
case STOPPED =>
logWarning("StreamingContext has already been stopped")
case ACTIVE =>
scheduler.stop(stopGracefully)
// Removing the streamingSource to de-register the metrics on stop()
env.metricsSystem.removeSource(streamingSource)
uiTab.foreach(_.detach())
StreamingContext.setActiveContext(null)
waiter.notifyStop()
if (shutdownHookRef != null) {
shutdownHookRefToRemove = shutdownHookRef
shutdownHookRef = null
}
logInfo("StreamingContext stopped successfully")
}
} finally {
// The state should always be Stopped after calling `stop()`, even if we haven't started yet
state = STOPPED
}
}
if (shutdownHookRefToRemove != null) {
ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove)
}
// Even if we have already stopped, we still need to attempt to stop the SparkContext because
// a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true).
if (stopSparkContext) sc.stop()
}
注释中说明要停止程序时,正确的方式是需要所有接收的数据被处理完成后再停止,那么就需要我们传入的stopGracefully参数为true,然后停止时会等待所有任务执行完成
- Spark Streaming提供了一个优雅停止的方法,在StreamingContext里面有一个stopOnShutdown()方法,代码如下
private def stopOnShutdown(): Unit = {
val stopGracefully = conf.getBoolean("spark.streaming.stopGracefullyOnShutdown", false)
logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook")
// Do not stop SparkContext, let its own shutdown hook stop it
stop(stopSparkContext = false, stopGracefully = stopGracefully)
}
stopOnShutdown()方法是什么意思呢,在我们的程序退出时,不管是正常退出或异常退出,stopOnShutdown()方法都会被回调,然后调用stop方法。stopGracefully 可以通过配置项spark.streaming.stopGracefullyOnShutdown配置,生产环境需要配置为true.
- stopOnShutdown()方法是怎样被调用的呢?在StreamingContext的start方法中有一行代码
shutdownHookRef = ShutdownHookManager.addShutdownHook(StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
添加stopOnShutdown函数到ShutdownHookManager中,addShutdownHook代码如下
def addShutdownHook(priority: Int)(hook: () => Unit): AnyRef = {
shutdownHooks.add(priority, hook)
}
看SparkShutdownHookManager 里都有什么,看代码注释了解SparkShutdownHookManager的功能,不一一介绍
private [util] class SparkShutdownHookManager {
// 优先级队列,优先级越大,越优先执行
private val hooks = new PriorityQueue[SparkShutdownHook]()
@volatile private var shuttingDown = false
/**
* Install a hook to run at shutdown and run all registered hooks in order. Hadoop 1.x does not
* have `ShutdownHookManager`, so in that case we just use the JVM's `Runtime` object and hope for
* the best.
*/
// 这里实例化一个线程,添加到jvm的关闭钩子中,等到jvm退出时才会被调用
def install(): Unit = {
val hookTask = new Runnable() {
override def run(): Unit = runAll()
} Try(Utils.classForName("org.apache.hadoop.util.ShutdownHookManager")) match {
case Success(shmClass) =>
val fsPriority = classOf[FileSystem]
.getField("SHUTDOWN_HOOK_PRIORITY")
.get(null) // static field, the value is not used
.asInstanceOf[Int]
val shm = shmClass.getMethod("get").invoke(null)
shm.getClass().getMethod("addShutdownHook", classOf[Runnable], classOf[Int])
.invoke(shm, hookTask, Integer.valueOf(fsPriority + 30))
case Failure(_) =>
Runtime.getRuntime.addShutdownHook(new Thread(hookTask, "Spark Shutdown Hook"));
}
}
// jvm退出时钩子回调此函数
def runAll(): Unit = {
shuttingDown = true
var nextHook: SparkShutdownHook = null
//循环从优先级队列取数据执行,优先级越大,越优先执行
while ({ nextHook = hooks.synchronized { hooks.poll() }; nextHook != null }) {
Try(Utils.logUncaughtExceptions(nextHook.run()))
}
}
def add(priority: Int, hook: () => Unit): AnyRef = {
hooks.synchronized {
if (shuttingDown) {
throw new IllegalStateException("Shutdown hooks cannot be modified during shutdown.")
}
val hookRef = new SparkShutdownHook(priority, hook)
hooks.add(hookRef)
hookRef
}
}
def remove(ref: AnyRef): Boolean = {
hooks.synchronized { hooks.remove(ref) }
}
}
- 看到这里就明白了,把stopOnShutdown()函数放入SparkShutdownHookManager 中的优化级队列hooks中,默认优先级为51,jvm退出时启动一个线程,调用runAll()方法,然后从hooks队列中一个一个取数据(函数),然后执行,就调用了stopOnShutdown()函数,接着调用stop()函数,我们的应用程序就可以优雅的执行停止工作了。
网友评论