美文网首页
探索Cache_t

探索Cache_t

作者: _涼城 | 来源:发表于2020-09-20 15:22 被阅读0次
    Cache_t 的整体分析
    Cache_t的源码

    objc/objc-runtime-new源码下查找结构体cache_t源码。

    struct cache_t {
    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
        explicit_atomic<struct bucket_t *> _buckets;
        explicit_atomic<mask_t> _mask;
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
        explicit_atomic<uintptr_t> _maskAndBuckets;
        ...//省略,掩码用处
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
        explicit_atomic<uintptr_t> _maskAndBuckets;
        ...//省略
    #else
    #error Unknown cache mask storage type.
    #endif
    
    #if __LP64__
        uint16_t _flags;
    #endif
        uint16_t _occupied;
    }
    

    那么CACHE_MASK_STORAGE的判断是什么意义呢?查看CACHE_MASK_STORAGE宏。

    arm64表示真机,LP64表示64位结构

    #if defined(__arm64__) && __LP64__
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_HIGH_16
    #elif defined(__arm64__) && !__LP64__
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_LOW_4  
    #else
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_OUTLINED//模拟器,MacOS
    #endif
    
    lldb获取cache_t
    cache_t 缓存buckets集合

    cache_t下有一个struct bucket_t *buckets();,这是一个bucket_t结构体集合的指针,我们可以像访问数组的方式一下,访问buckets内的内每一个bucket_t

    下面是bucket_t的部分源码

    struct bucket_t {
    private:
        // IMP-first is better for arm64e ptrauth and no worse for arm64.
        // SEL-first is better for armv7* and i386 and x86_64.
    #if __arm64__
        explicit_atomic<uintptr_t> _imp;
        explicit_atomic<SEL> _sel;
    #else
        explicit_atomic<SEL> _sel;
        explicit_atomic<uintptr_t> _imp;
    #endif
    ...//省略
    public:
        inline SEL sel() const { return _sel.load(memory_order::memory_order_relaxed); }
    
        inline IMP imp(Class cls) const {
        ...//省略
        }
        ...//省略
    }
    
    Cache_t的结构图
    Cache_t结构.png
    脱离源码环境调试分析
    完整代码
    typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits
    
    struct oc_bucket_t {
        SEL _sel;
        IMP _imp;
    };
    
    struct oc_cache_t {
        struct oc_bucket_t * _buckets;
        mask_t _mask;
        uint16_t _flags;
        uint16_t _occupied;
    };
    
    struct oc_class_data_bits_t {
        uintptr_t bits;
    };
    
    struct oc_objc_class {
        Class ISA;
        Class superclass;
        struct oc_cache_t cache;             // formerly cache pointer and vtable
        struct oc_class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
    };
    
    void logClass(Class class){
            struct oc_objc_class *lg_pClass = (__bridge struct oc_objc_class *)(class);
            NSLog(@"%hu - %u",lg_pClass->cache._occupied,lg_pClass->cache._mask);
            for (mask_t i = 0; i<lg_pClass->cache._mask; i++) {
                // 打印获取的 bucket
                struct oc_bucket_t bucket = lg_pClass->cache._buckets[I];
                NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
            }
    
    }
    
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            Person *p  = [Person alloc];
            Class pClass = [Person class];  // objc_clas
            [p say1];
            [p say2];
           
            logClass(pClass);
            [p say3];
            [p say4];
            logClass(pClass);
            
            [p say5];
            [p say6];
            logClass(pClass);
         
       
        }
        return 0;
    }
    
    
    
    输出结果
    • 调用两个方法时:

      两种不同的方法.png
    • 调用四个方法时:
    四种不同的方法.png
    Cache_t原理分析
    insert方法分析
    1. Cache_t中找到了 void incrementOccupied();函数,对_occupied进行自增
    1. 全局搜索incrementOccupied()函数,发现只在objc-cache文件下cache_tinsert方法有调用,
    incrementOccupied调用.png
    1. 查看insert方法,我们发现进入该方法后,就会对当前的occupied进行+1赋值给新的变量 newOccupied

      • 如果当前buckets为空,则进行重新开辟空间reallocatereallocate中调用setBucketsAndMask进行初始化,_occupied等于0,INIT_CACHE_SIZE4.

        void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
        {
        
        #ifdef __arm__
            // ensure other threads see buckets contents before buckets pointer
            mega_barrier();
            _buckets.store(newBuckets, memory_order::memory_order_relaxed);
            
            // ensure other threads see new buckets before new mask
            mega_barrier();
            
            _mask.store(newMask, memory_order::memory_order_relaxed);
            _occupied = 0;
        #elif __x86_64__ || i386
            // ensure other threads see buckets contents before buckets pointer
            _buckets.store(newBuckets, memory_order::memory_order_release);
            
            // ensure other threads see new buckets before new mask
            _mask.store(newMask, memory_order::memory_order_release);
            _occupied = 0;
        #else
        #error Don't know how to do setBucketsAndMask on this architecture.
        #endif
        }
        
        
      • 如果新增的值 小于容量的 3/4,则什么也不做

      • 否则进行扩容,重新开辟空间,_occupied等于0

      • 最后缓存方法,并对_occupied进行自增。

      void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
      {
      #if CONFIG_USE_CACHE_LOCK
          cacheUpdateLock.assertLocked();
      #else
          runtimeLock.assertLocked();
      #endif
      
          ASSERT(sel != 0 && cls->isInitialized());
      
          // Use the cache as-is if it is less than 3/4 full
          mask_t newOccupied = occupied() + 1;
          unsigned oldCapacity = capacity(), capacity = oldCapacity;
          if (slowpath(isConstantEmptyCache())) {
              // Cache is read-only. Replace it.
              if (!capacity) capacity = INIT_CACHE_SIZE;
              reallocate(oldCapacity, capacity, /* freeOld */false);
          }
          else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
              // Cache is less than 3/4 full. Use it as-is.
          }
          else {
              capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
              if (capacity > MAX_CACHE_SIZE) {
                  capacity = MAX_CACHE_SIZE;
              }
              reallocate(oldCapacity, capacity, true);
          }
      
          bucket_t *b = buckets();
          mask_t m = capacity - 1;
          mask_t begin = cache_hash(sel, m);
          mask_t i = begin;
      
          // Scan for the first unused slot and insert there.
          // There is guaranteed to be an empty slot because the
          // minimum size is 4 and we resized at 3/4 full.
          do {
              if (fastpath(b[i].sel() == 0)) {
                  incrementOccupied();
                  b[i].set<Atomic, Encoded>(sel, imp, cls);
                  return;
              }
              if (b[i].sel() == sel) {
                  // The entry was added to the cache by some other thread
                  // before we grabbed the cacheUpdateLock.
                  return;
              }
          } while (fastpath((i = cache_next(i, m)) != begin));
      
          cache_t::bad_cache(receiver, (SEL)sel, cls);
      }
      
      
    Cache_t流程图

    附上一个流程图


    Cooci 关于Cache_t原理分析图.png
    _occupied是什么?

    _occupied为分配的内存中已经存储了sel-imp的的个数

    _mask是什么?

    _mask是指掩码数据mask 等于capacity - 1

    为什么buckets会有丢失?

    reallocate扩容时,是将原有的内存全部清除了,再重新申请了内存导致

    为什么顺序有问题?

    哈希算法计算下标,下标是随机的,并不是固定的.

    相关文章

      网友评论

          本文标题:探索Cache_t

          本文链接:https://www.haomeiwen.com/subject/nrfpyktx.html