美文网首页RNA-seq
用RNA-SeQC得到表达矩阵RPKM值

用RNA-SeQC得到表达矩阵RPKM值

作者: 因地制宜的生信达人 | 来源:发表于2018-01-17 20:55 被阅读312次

这个软件不仅仅能做QC,而且可以统计各个基因的RPKM值!尤其是TCGA计划里面的都是用它算的

一、程序安装

直接在官网下载java版本软件即可 使用: http://www.broadinstitute.org/cancer/cga/tools/rnaseqc/RNA-SeQC_v1.1.8.jar

但是需要下载很多注释数据

x

二、输入数据

x

箭头所指的文件, 一个都不少,只有那个rRNA.tar我没有用, 因为这个软件有两种使用方式,我用的是第一种

三、软件使用

软件的官网给力例子,很容易学习:

RNA-SeQC can be run with or without a BWA-based rRNA level estimation mode. To run without (less accurate, but faster) use the command:

java -jar RNASeQC.jar -n 1000 -s "TestId|ThousandReads.bam|TestDesc" -t gencode.v7.annotation_goodContig.gtf -r Homo_sapiens_assembly19.fasta -o ./testReport/ -strat gc -gc gencode.v7.gc.txt 

我用的就是这个例子,这个例子需要的所有文件里面,染色体都是没有chr的,这个非常重要!!!

代码如下:

java -jar RNA-SeQC_v1.1.8.jar  \
-n 1000 \
-s "TestId|ThousandReads.bam|TestDesc" \
-t gencode.v7.annotation_goodContig.gtf \
-r ~/ref-database/human_g1k_v37/human_g1k_v37.fasta  \
-o ./testReport/ \
-strat gc \
-gc gencode.v7.gc.txt

To run the more accurate but slower, BWA-based method :

java -jar RNASeQC.jar -n 1000 -s "TestId|ThousandReads.bam|TestDesc" -t gencode.v7.annotation_goodContig.gtf -r Homo_sapiens_assembly19.fasta -o ./testReport/ -strat gc -gc gencode.v7.gc.txt -BWArRNA human_all_rRNA.fasta**

Note: this assumes BWA is in your PATH. If this is not the case, use the -bwa flag to specify the path to BWA

四、结果解读

运行要点时间,就那个一千条reads的测试数据都搞了10分钟!

出来一大堆突变,具体解释,官网上面很详细,不过,比较重要的当然是RPKM值咯,还有QC的信息

clipboard

TCGA数据里面都会提供由RNA-SeQC软件处理得到的表达矩阵!

Expression

  • RPKM data are used as produced by RNA-SeQC.
  • Filter on >=10 individuals with >0.1 RPKM and raw read counts greater than 6.
  • Quantile normalization was performed within each tissue to bring the expression profile of each sample onto the same scale.
  • To protect from outliers, inverse quantile normalization was performed for each gene, mapping each set of expression values to a standard normal.

软件的主页是:
http://www.broadinstitute.org/cancer/cga/rnaseqc_run
http://www.broadinstitute.org/cancer/cga/rnaseqc_download

帮助文件: http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/rnaseqc/RNA-SeQC_Help_v1.1.2.pdf

相关文章

网友评论

    本文标题:用RNA-SeQC得到表达矩阵RPKM值

    本文链接:https://www.haomeiwen.com/subject/nvxpoxtx.html