美文网首页分析101
利用矩母函数求独立随机变量之和的分布

利用矩母函数求独立随机变量之和的分布

作者: Boye0212 | 来源:发表于2021-04-12 20:58 被阅读0次

    在求独立的随机变量之和的分布时,可用矩母函数法。

    1 矩母函数法

    定理 已知X_1,\ldots,X_n为独立的随机变量,各种的矩母函数为M_1,\ldots,M_na_1,\ldots,a_n为常数,则Y=\sum_{i=1}^{n}a_i X_i的矩母函数为
    M_Y(t)=\text{E}[\exp(t\sum_{i=1}^{n}a_iX_i)]=\prod_{i=1}^{n}M_i(a_i t)

    2 案例

    2.1 Bernoulli分布

    X_1,\ldots,X_n为来自\text{Bernoulli}(p)分布的随机样本,则X_i的矩母函数为
    M(t)=1-p+p e^t

    那么Y=\sum_{i=1}^{n}X_i的矩母函数为
    M_Y(t)=(1-p+e^t)^n
    这正是\text{Binomial}(n,p)分布的矩母函数。

    2.2 正态分布

    X_i\sim N(\mu_i,\sigma^2_i)i=1,\ldots,n,且相互独立,正态分布的矩母函数为
    M_X(t) = \exp(t\mu+\dfrac{1}{2}t^2 \sigma^2)

    那么Y=\sum_{i=1}^{n}a_i X_i的矩母函数为
    \begin{aligned} M_Y(t)=&\prod_{i=1}^{n}\exp\left(a_i\mu_i t+\dfrac{1}{2}a_i^2 \sigma_i^2 t^2\right)\\ =&\exp\left(t\sum_{i=1}^{n}a_i\mu_i+\dfrac{t^2}{2}\sum_{i=1}^{n}a_i^2 \sigma_i^2 \right) \end{aligned}

    因此Y\sim N(\sum\limits_{i=1}^{n}a_i\mu_i,\sum\limits_{i=1}^{n}a_i^2 \sigma_i^2)

    相关文章

      网友评论

        本文标题:利用矩母函数求独立随机变量之和的分布

        本文链接:https://www.haomeiwen.com/subject/nzhflltx.html