神经网络基础模型例子--Logistic Regression的

作者: zenRRan | 来源:发表于2017-09-07 18:49 被阅读2459次


    注释!下面有我的公众号这个文章的链接,这里格式不对了,看那个吧。

    概述

        Logistic Regression 即逻辑回归,属于监督学习,输入x(特征数据),输出为0或1(显然是二分类)。为什么要用逻辑回归讲神经网络基础呢?我觉得这个相对比较简单,易懂,而且有神经网络基本都会用到的激活函数(Activation Function)。

    正向传播,搭建神经网络

    第一层


          比如我们要给二维平面的点做分类,则输入的是特征有,(即点的x,y坐标)。参数我们设置三个(一个特征配一个参数,再加一个biase),这里我设为,在加上一个biase。这样我们就得到了一个函数值:

          我们设置值为z,则此时我们已经对原始数据进行了第一次处理,也就是得到我们第一个神经元

        (注:我们也可以把参数放到的对应线上)

    第二层


        可是我们目的是为了分类0或1,也就是输出的结果起码得在0-1之间。可是我们根本不知道z的值有多大,也就无法控制范围,所以我们用一个函数来完美起到可以把结果限制到0-1范围内,这个函数是长这个样子  。我们对它做个测验(->趋近于):

          当x->正无穷,值->1;

          当x->负无穷时,值->0;

          当x=0时,值=1/2。

        大概图像长这个样子:

        像这样将结果做一次函数特殊处理的,我们称之为Activation Function,记这个函数为sigmod。

        因为接下来要用到它的导数,这里我推导下它的求导过程,以后记住结果就行:


    这次我们第二次对数据做了处理,就可以再添加一个神经元了:

    (其中这里表示sigmod,a表示它的值。)

    第三层


        结果我们已经计算出来了,是a,那么我们怎样才能更新我们的参数呢?当然是赶紧找到损失函数啦。

        我们先回顾下我们之前所用过的最简单的损失函数(预测值,y为真实值)。可是这种损失函数在参数w大于1个的时候,就很有可能出现多个极值点(比如它的函数这个样子),而导致梯度下降法无法得到最优解。

        逻辑回归损失函数是这样的

        if y=1,则,想要越大,则就要越小。

        if y=0,则,想要越小,则就要越小。

    综上所述,要想使精确地靠近y,仅仅使达到最小即可。

    这次就是我们的第三次也是最后一次处理数据了,所以又添加了一个损失函数神经元:

      (其中的a就是上面的)

    上面的整个数据传送过程,我们称之为 正向传播

    反向传播,更新参数

        要想通过损失函数L对进行更新,就得求L的上的梯度,怎么求梯度呢?很显然,链式求导呀。

        我推导了下:

    链式求导 然后我们对参数进行更新:

    (alpha为学习率)

    这个过程就是 反向传播


    代码生成

    生成数据


        初始化数据点,绿点为1类,红点为0类。

    图像显示:

    规范数据(缩小到-1 — 1,不清楚原因的可以看前面的梯度下降算法的相关说明)

    图为:

    sigmod函数



    初始化参数

    初始成的数据:


    画图函数


    训练过程


        上面讲的很详细了,应该能看懂

    第一个图:
    第二张图:

    后面的一张图:

    成功

    损失函数


    损失函数图:

        以上理论部分理解来自Andrew Ng视频教程。

        本博客链接我的微信公众号。有什么问题一起探讨,共同进步。

        我的微信公众号 DeepLearningForNLP,最近创建的,嘿嘿。

    相关文章

      网友评论

        本文标题:神经网络基础模型例子--Logistic Regression的

        本文链接:https://www.haomeiwen.com/subject/oczijxtx.html