顾名思义,时间序列数据是一种随时间变化的数据类型。例如,24小时内的温度,一个月内各种产品的价格,一年中特定公司的股票价格。诸如长期短期记忆网络(LSTM)之类的高级深度学习模型能够捕获时间序列数据中的模式,因此可用于对数据的未来趋势进行预测。在本文中,您将看到如何使用LSTM算法使用时间序列数据进行将来的预测。
数据集和问题定义
让我们先导入所需的库,然后再导入数据集:
import torch import torch.nn as nn import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline
让我们打印 所有数据集的列表:
sns.get_dataset_names()
输出:
['anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'exercise', 'flights', 'fmri', 'gammas', 'iris', 'mpg', 'planets', 'tips', 'titanic']
让我们将数据集加载到我们的应用程序中
flight_data = sns.load_dataset("flights") flight_data.head()
输出:
need-to-insert-img
该数据集有三列:year,month,和passengers。该passengers列包含指定月份旅行旅客的总数。让我们绘制数据集的形状:
flight_data.shape
输出:
(144, 3)
您可以看到数据集中有144行和3列,这意味着数据集包含12年的乘客旅行记录。
任务是根据前132个月来预测最近12个月内旅行的乘客人数。请记住,我们有144个月的记录,这意味着前132个月的数据将用于训练我们的LSTM模型,而模型性能将使用最近12个月的值进行评估。
让我们绘制每月乘客的出行频率。
接下来的脚本绘制了每月乘客人数的频率:
输出:
need-to-insert-img
输出显示,多年来,乘飞机旅行的平均乘客人数有所增加。一年内旅行的乘客数量波动,这是有道理的,因为在暑假或寒假期间,旅行的乘客数量与一年中的其他部分相比有所增加。
数据预处理
数据集中的列类型为object,如以下代码所示:
输出:
Index(['year', 'month', 'passengers'], dtype='object')
第一步是将passengers列的类型更改为float。
all_data = flight_data['passengers'].values.astype(float)
现在,如果 打印all_datanumpy数组,则应该看到以下浮动类型值:
print(all_data)
输出:
[112. 118. 132. 129. 121. 135. 148. 148. 136. 119. 104. 118. 115. 126. 141. 135. 125. 149. 170. 170. 158. 133. 114. 140. 145. 150. 178. 163. 172. 178. 199. 199. 184. 162. 146. 166. 171. 180. 193. 181. 183. 218. 230. 242. 209. 191. 172. 194. 196. 196. 236. 235. 229. 243. 264. 272. 237. 211. 180. 201. 204. 188. 235. 227. 234. 264. 302. 293. 259. 229. 203. 229. 242. 233. 267. 269. 270. 315. 364. 347. 312. 274. 237. 278. 284. 277. 317. 313. 318. 374. 413. 405. 355. 306. 271. 306. 315. 301. 356. 348. 355. 422. 465. 467. 404. 347. 305. 336. 340. 318. 362. 348. 363. 435. 491. 505. 404. 359. 310. 337. 360. 342. 406. 396. 420. 472. 548. 559. 463. 407. 362. 405. 417. 391. 419. 461. 472. 535. 622. 606. 508. 461. 390. 432.]
接下来,我们将数据集分为训练集和测试集。LSTM算法将在训练集上进行训练。然后将使用该模型对测试集进行预测。将预测结果与测试集中的实际值进行比较,以评估训练后模型的性能。
前132条记录将用于训练模型,后12条记录将用作测试集。以下脚本将数据分为训练集和测试集。
现在让我们输出测试和训练集的长度:
输出:
132 12
如果现在输出测试数据,您将看到它包含all_datanumpy数组中的最后12条记录:
print(test_data)
输出:
[417. 391. 419. 461. 472. 535. 622. 606. 508. 461. 390. 432.]
我们的数据集目前尚未规范化。最初几年的乘客总数远少于后来几年的乘客总数。标准化数据以进行时间序列预测非常重要。以在一定范围内的最小值和最大值之间对数据进行规范化。我们将使用模块中的MinMaxScaler类sklearn.preprocessing来扩展数据。
以下代码 分别将最大值和最小值分别为-1和1归一化。
输出:
[[-0.96483516] [-0.93846154] [-0.87692308] [-0.89010989] [-0.92527473]] [[1. ] [0.57802198] [0.33186813] [0.13406593] [0.32307692]]
您可以看到数据集值现在在-1和1之间。
在此重要的是要提到数据标准化仅应用于训练数据,而不应用于测试数据。如果对测试数据进行归一化处理,则某些信息可能会从训练集中 到测试集中。
最后的预处理步骤是将我们的训练数据转换为序列和相应的标签。
您可以使用任何序列长度,这取决于领域知识。但是,在我们的数据集中,使用12的序列长度很方便,因为我们有月度数据,一年中有12个月。如果我们有每日数据,则更好的序列长度应该是365,即一年中的天数。因此,我们将训练的输入序列长度设置为12。
接下来,我们将定义一个名为的函数create_inout_sequences。该函数将接受原始输入数据,并将返回一个元组列表。在每个元组中,第一个元素将包含与12个月内旅行的乘客数量相对应的12个项目的列表,第二个元组元素将包含一个项目,即在12 + 1个月内的乘客数量。
执行以下脚本以创建序列和相应的标签进行训练:
如果打印train_inout_seq列表的长度,您将看到它包含120个项目。这是因为尽管训练集包含132个元素,但是序列长度为12,这意味着第一个序列由前12个项目组成,第13个项目是第一个序列的标签。同样,第二个序列从第二个项目开始,到第13个项目结束,而第14个项目是第二个序列的标签,依此类推。
现在让我们输出train_inout_seq列表的前5个项目:
输出:
[(tensor([-0.9648, -0.9385, -0.8769, -0.8901, -0.9253, -0.8637, -0.8066, -0.8066, -0.8593, -0.9341, -1.0000, -0.9385]), tensor([-0.9516])), (tensor([-0.9385, -0.8769, -0.8901, -0.9253, -0.8637, -0.8066, -0.8066, -0.8593, -0.9341, -1.0000, -0.9385, -0.9516]), tensor([-0.9033])), (tensor([-0.8769, -0.8901, -0.9253, -0.8637, -0.8066, -0.8066, -0.8593, -0.9341, -1.0000, -0.9385, -0.9516, -0.9033]), tensor([-0.8374])), (tensor([-0.8901, -0.9253, -0.8637, -0.8066, -0.8066, -0.8593, -0.9341, -1.0000, -0.9385, -0.9516, -0.9033, -0.8374]), tensor([-0.8637])), (tensor([-0.9253, -0.8637, -0.8066, -0.8066, -0.8593, -0.9341, -1.0000, -0.9385, -0.9516, -0.9033, -0.8374, -0.8637]), tensor([-0.9077]))]
您会看到每个项目都是一个元组,其中第一个元素由序列的12个项目组成,第二个元组元素包含相应的标签。
创建LSTM模型
我们已经对数据进行了预处理,现在是时候训练我们的模型了。我们将定义一个类LSTM,该类继承自nn.ModulePyTorch库的类。
让我总结一下以上代码中发生的事情。LSTM该类的构造函数接受三个参数:
input_size:对应于输入中的要素数量。尽管我们的序列长度为12,但每个月我们只有1个值,即乘客总数,因此输入大小为1。
hidden_layer_size:指定隐藏层的数量以及每层中神经元的数量。我们将有一层100个神经元。
output_size:输出中的项目数,由于我们要预测未来1个月的乘客人数,因此输出大小为1。
接下来,在构造函数中,我们创建变量hidden_layer_size,lstm,linear,和hidden_cell。LSTM算法接受三个输入:先前的隐藏状态,先前的单元状态和当前输入。该hidden_cell变量包含先前的隐藏状态和单元状态。的lstm和linear层变量用于创建LSTM和线性层。
在forward方法内部,将input_seq作为参数传递,该参数首先传递给lstm图层。lstm层的输出是当前时间步的隐藏状态和单元状态,以及输出。lstm图层的输出将传递到该linear图层。预计的乘客人数存储在predictions列表的最后一项中,并返回到调用函数。
下一步是创建LSTM()类的对象,定义损失函数和优化器。由于我们正在解决分类问题,
让我们输出模型:
输出:
训练模型
我们将训练模型150个步长。
输出:
epoch: 1 loss: 0.00517058 epoch: 26 loss: 0.00390285 epoch: 51 loss: 0.00473305 epoch: 76 loss: 0.00187001 epoch: 101 loss: 0.00000075 epoch: 126 loss: 0.00608046 epoch: 149 loss: 0.0004329932
由于默认情况下权重是在PyTorch神经网络中随机初始化的,因此您可能会获得不同的值。
做出预测
现在我们的模型已经训练完毕,我们可以开始进行预测了。
输出:
[0.12527473270893097, 0.04615384712815285, 0.3274725377559662, 0.2835164964199066, 0.3890109956264496, 0.6175824403762817, 0.9516483545303345, 1.0, 0.5780220031738281, 0.33186814188957214, 0.13406594097614288, 0.32307693362236023]
您可以将上述值与train_data_normalized数据列表的最后12个值进行比较。
该test_inputs项目将包含12个项目。在for循环内,这12个项目将用于对测试集中的第一个项目进行预测,即项目编号133。然后将预测值附加到test_inputs列表中。在第二次迭代中,最后12个项目将再次用作输入,并将进行新的预测,然后将其test_inputs再次添加到列表中。for由于测试集中有12个元素,因此该循环将执行12次。在循环末尾,test_inputs列表将包含24个项目。最后12个项目将是测试集的预测值。
以下脚本用于进行预测:
如果输出test_inputs列表的长度,您将看到它包含24个项目。可以按以下方式打印最后12个预测项目:
输出:
[0.4574652910232544, 0.9810629487037659, 1.279405951499939, 1.0621851682662964, 1.5830546617507935, 1.8899496793746948, 1.323508620262146, 1.8764172792434692, 2.1249167919158936, 1.7745600938796997, 1.7952896356582642, 1.977765679359436]
需要再次提及的是,根据用于训练LSTM的权重,您可能会获得不同的值。
由于我们对训练数据集进行了标准化,因此预测值也进行了标准化。我们需要将归一化的预测值转换为实际的预测值。
actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:] ).reshape(-1, 1)) print(actual_predictions)
输出:
[[435.57335371] [554.69182083] [622.56485397] [573.14712578] [691.64493555] [761.46355206] [632.59821111] [758.38493103] [814.91857016] [735.21242136] [739.92839211] [781.44169205]]
现在让我们针对实际值绘制预测值。看下面的代码:
x = np.arange(132, 144, 1) print(x)
输出:
[132 133 134 135 136 137 138 139 140 141 142 143]
在上面的脚本中,我们创建一个列表,其中包含最近12个月的数值。第一个月的索引值为0,因此最后一个月的索引值为143。
在下面的脚本中,我们将绘制144个月的乘客总数以及最近12个月的预计乘客数量。
plt.title('Month vs Passenger') plt.ylabel('Total Passengers') plt.grid(True) plt.autoscale(axis='x', tight=True) plt.plot(flight_data['passengers']) plt.plot(x,actual_predictions) plt.show()
输出:
need-to-insert-img
我们的LSTM所做的预测用橙色线表示。您可以看到我们的算法不太准确,但是它仍然能够捕获最近12个月内旅行的乘客总数的上升趋势以及偶尔的波动。您可以尝试在LSTM层中使用更多的时期和更多的神经元,以查看是否可以获得更好的性能。
为了更好地查看输出,我们可以绘制最近12个月的实际和预测乘客数量,如下所示:
plt.title('Month vs Passenger') plt.ylabel('Total Passengers') plt.grid(True) plt.autoscale(axis='x', tight=True) plt.plot(flight_data['passengers'][-train_window:]) plt.plot(x,actual_predictions) plt.show()
输出:
need-to-insert-img
预测不是很准确,但是该算法能够捕获趋势,即未来几个月的乘客数量应高于前几个月,且偶尔会有波动。
结论
LSTM是解决序列问题最广泛使用的算法之一。在本文中,我们看到了如何通过LSTM使用时间序列数据进行未来的预测。
网友评论