hive允许用户使用自定义函数解决hive 自带函数无法处理的逻辑。hive自定义函数只在当前线程内临时有效,可以使用shell脚本调用执行hive命令。
1. UDF —— 输入一行数据输出一行数据。
解决问题描述
想要比较两个逗号分隔的字符串是否相同。
使用方法
如果ignoreNullFlag是1,则两个字符串都是空算相等,如果不是1,算不等
add jar /home/mart_wzyf/zhuhongmei/plist_udf_udaf.jar;
CREATE TEMPORARY FUNCTION compareStringBySplit AS 'com.jd.plist.udf.TestUDF';
SELECT compareStringBySplit("22,11,33", "11,33,22",1) FROM scores;
DROP TEMPORARY FUNCTION compareStringBySplit;
java代码中用户必须要继承UDF,且必须至少实现一个evalute方法
package com.jd.plist.udf;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
public class TestUDF extends UDF {
private static final int MATCH = 1;
private static final int NOT_MATCH = 0;
/**
* 入参3个。
* @param aids
* @param bids
* @param ignoreNullFlag
* @return
*/
public int evaluate(String aids, String bids, int ignoreNullFlag) {
if (StringUtils.isBlank(aids) && StringUtils.isBlank(bids)) {
if (ignoreNullFlag == 1) {
return MATCH;
} else {
return NOT_MATCH;
}
} else if (StringUtils.isBlank(aids) && !StringUtils.isBlank(bids)) {
return NOT_MATCH;
} else if (!StringUtils.isBlank(aids) && StringUtils.isBlank(bids)) {
return NOT_MATCH;
} else {
String[] aidArray = aids.split(",");
String[] bidArray = bids.split(",");
for (String aid : aidArray) {
boolean exist = false;
for (String bid : bidArray) {
if (aid.equals(bid)) {
exist = true;
}
}
if (!exist) {
return NOT_MATCH;
}
}
return MATCH;
}
}
}
UDAF —— 输入多行数据输出一行数据,一般在group by中使用
解决问题描述
自己实现将相同主id下的子id用逗号拼接。
使用方法
add jar /home/mart_wzyf/zhuhongmei/plist_udf_udaf-0.0.1.jar;
CREATE TEMPORARY FUNCTION concat_sku_id AS 'com.jd.plist.udaf.TestUDAF';
select concat_sku_id(item_sku_id,',') from app.app_cate3_sku_info where dt =sysdate(-1) and item_third_cate_cd = 870 group by main_sku_id;
DROP TEMPORARY FUNCTION concat_sku_id;
java代码
Evaluator需要实现 init、iterate、terminatePartial、merge、terminate这几个函数
init初始化,iterate函数处理读入的行数据,terminatePartial返回iterate处理的中建结果,merge合并上述处理结果,terminate返回最终值。
package com.jd.plist.udaf;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
public class TestUDAF extends UDAF {
public static class TestUDAFEvaluator implements UDAFEvaluator {
public static class PartialResult {
String skuids;
String delimiter;
}
private PartialResult partial;
public void init() {
partial = null;
}
public boolean iterate(String item_sku_id, String deli) {
if (item_sku_id == null) {
return true;
}
if (partial == null) {
partial = new PartialResult();
partial.skuids = new String("");
if (deli == null || deli.equals("")) {
partial.delimiter = new String(",");
} else {
partial.delimiter = new String(deli);
}
}
if (partial.skuids.length() > 0) {
partial.skuids = partial.skuids.concat(partial.delimiter);
}
partial.skuids = partial.skuids.concat(item_sku_id);
return true;
}
public PartialResult terminatePartial() {
return partial;
}
public boolean merge(PartialResult other) {
if (other == null) {
return true;
}
if (partial == null) {
partial = new PartialResult();
partial.skuids = new String(other.skuids);
partial.delimiter = new String(other.delimiter);
} else {
if (partial.skuids.length() > 0) {
partial.skuids = partial.skuids.concat(partial.delimiter);
}
partial.skuids = partial.skuids.concat(other.skuids);
}
return true;
}
public String terminate() {
return new String(partial.skuids);
}
}
UDTF ——用来实现一行输入多行输出
用途
将字符串(key1:20;key2:30;key3:40)按照分好拆分行按照冒号拆分列进行展示。
使用方法
add jar /home/mart_wzyf/zhuhongmei/plist_udf_udaf-0.0.3.jar;
CREATE TEMPORARY FUNCTION explode_map AS 'com.jd.plist.udtf.TestUDTF';
select explode_map(mapstrs) as (col1,col2) from app.app_test_zhuzhu_maps;
DROP TEMPORARY FUNCTION explode_map;
java代码
initialize初始化校验参数是否正确。process处理返回结果。forward将结果返回
package com.jd.plist.udtf;
import java.util.ArrayList;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
public class TestUDTF extends GenericUDTF {
@Override
public void close() throws HiveException {
// TODO Auto-generated method stub
}
@Override
public StructObjectInspector initialize(ObjectInspector[] args) throws UDFArgumentException {
if (args.length != 1) {
throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
ArrayList<String> fieldNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("col1");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("col2");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
@Override
public void process(Object[] args) throws HiveException {
String input = args[0].toString();
String[] test = input.split(";");
for (int i = 0; i < test.length; i++) {
try {
String[] result = test[i].split(":");
forward(result);
} catch (Exception e) {
continue;
}
}
}
}
注意UDTF使用
UDTF有两种使用方法,一种直接放到select后面,一种和lateral view一起使用。
1:直接select中使用
select explode_map(properties) as (col1,col2) from src;
不可以添加其他字段使用
select a, explode_map(properties) as (col1,col2) from src
不可以嵌套调用
select explode_map(explode_map(properties)) from src
不可以和group by/cluster by/distribute by/sort by一起使用
select explode_map(properties) as (col1,col2) from src group by col1, col2
2:和lateral view一起使用
select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;
网友评论