
判别分析
判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
判别分析和聚类分析都是要求对样本进行分类,但两者的分析内容和要求是不一样的。聚类分析是给定数量的样品,但样品应划分出怎样的类别还不清楚,需要聚类分析来判别。判别分析是已知样品应分为怎样的类别,判断每一个样品应属于怎样的类别。

距离判别
距离判别是以给定样品与各总体之间的距离的计算值为准则进行类别判断的一种方法。由于马氏距离不受量纲的影响,因此,在距离判别法中,也采用马氏距离作为类别判断的依据。
两个总体的判别规则
(1)若ω(x)>0 则x属于G₁
(2)若ω(x)<0 则x属于G₂
(3)若ω(x)=0 则待判
其中,ω(x)为x的线性函数:(推导过程略)

协方差阵不同时:
判别函数为:

Fisher判别法
该法是按照类内方差尽量小,类间方差尽量大的准则来要求判别函数。组与组的分开借用了方差分析的思想。
1. 两总体Fisher判别
从两个总体中抽取p个指标的样品观测数据,根据方差分析的思想构造一个判别函数:

定义分组变量范围,如下图:

点击Statistics
按钮,选择如下图:

Fisher's:
实际是对新样品进行判别分类的贝叶斯判别系数。因为按判别函数值最大的一组进行归类这种思想是Fisher提出的,所以SPSS用Fisher对贝叶斯方法进行命名。
未标准化:
即一般意义上的费舍尔判别函数系数(系统一般给出的是标准化的费舍尔判别函数系数)
单击分类
按钮,如下图:

单击Save
按钮,选项如下图:

主要输出结果:

右图是贝叶斯判别函数系数表,将样品的各参数带入2个贝叶斯判别函数,比较得出的函数值,哪个函数值较大就将该样品归于哪一类。
以及最后的样品判别结果见下表:

可以直接读出预测组的分类为第2类。
网友评论