美文网首页Python_图像处理
Python将头像照片转换为漫画,采用GAN深度学习,无噪点

Python将头像照片转换为漫画,采用GAN深度学习,无噪点

作者: 程序员小西 | 来源:发表于2022-04-07 16:56 被阅读0次

传统的照片转漫画,使用边缘检测、双边滤波器和降采样,得到图像如下,可以看到,噪点很多,有些关键线条也没有展现出来。

本次采用GAN,GAN网络使用的方法是根据图像对去不断地学习,如输入图像1和对应已有的漫画B,GAN网络从图片1中获取关键特征,不停地生成一张图像C,当C与B的差值很小时停止,当有很多这样地图像对时,我们就有了一个模型。输入一张图像,就可以生成一张对应地漫画图像,我这次使用的GAN(White-box Cartoon)生成。生成效果:

图片.png 图片.png

原始图片大小建议为256*256像素

完整程序代码


import os
import cv2
import torch
import numpy as np
import torch.nn as nn

class ResBlock(nn.Module):
    def __init__(self, num_channel):
        super(ResBlock, self).__init__()
        self.conv_layer = nn.Sequential(
        nn.Conv2d(num_channel, num_channel, 3, 1, 1),
        nn.BatchNorm2d(num_channel),
        nn.ReLU(inplace=True),
        nn.Conv2d(num_channel, num_channel, 3, 1, 1),
        nn.BatchNorm2d(num_channel))
        self.activation = nn.ReLU(inplace=True)
        
        def forward(self, inputs):
            output = self.conv_layer(inputs)
            output = self.activation(output + inputs)
            return output
            
            
            class DownBlock(nn.Module):
                def __init__(self, in_channel, out_channel):
                    super(DownBlock, self).__init__()
                    self.conv_layer = nn.Sequential(
                    nn.Conv2d(in_channel, out_channel, 3, 2, 1),
                    nn.BatchNorm2d(out_channel),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(out_channel, out_channel, 3, 1, 1),
                    nn.BatchNorm2d(out_channel),
                    nn.ReLU(inplace=True))
                    
                    
                    def forward(self, inputs):
                        output = self.conv_layer(inputs)
                        return output
                        
                        
                        class UpBlock(nn.Module):
                            def __init__(self, in_channel, out_channel, is_last=False):
                                super(UpBlock, self).__init__()
                                self.is_last = is_last
                                self.conv_layer = nn.Sequential(
                                nn.Conv2d(in_channel, in_channel, 3, 1, 1),
                                nn.BatchNorm2d(in_channel),
                                nn.ReLU(inplace=True),
                                nn.Upsample(scale_factor=2),
                                nn.Conv2d(in_channel, out_channel, 3, 1, 1))
                                self.act = nn.Sequential(
                                nn.BatchNorm2d(out_channel),
                                nn.ReLU(inplace=True))
                                self.last_act = nn.Tanh()
                                
                                
                                def forward(self, inputs):
                                    output = self.conv_layer(inputs)
                                    if self.is_last:
                                        output = self.last_act(output)
                                    else:
                                        output = self.act(output)
                                        return output
                                        
                                        
                                        
                                        class SimpleGenerator(nn.Module):
                                            def __init__(self, num_channel=32, num_blocks=4):
                                                super(SimpleGenerator, self).__init__()
                                                self.down1 = DownBlock(3, num_channel)
                                                self.down2 = DownBlock(num_channel, num_channel*2)
                                                self.down3 = DownBlock(num_channel*2, num_channel*3)
                                                self.down4 = DownBlock(num_channel*3, num_channel*4)
                                                res_blocks = [ResBlock(num_channel*4)]*num_blocks
                                                self.res_blocks = nn.Sequential(*res_blocks)
                                                self.up1 = UpBlock(num_channel*4, num_channel*3)
                                                self.up2 = UpBlock(num_channel*3, num_channel*2)
                                                self.up3 = UpBlock(num_channel*2, num_channel)
                                                self.up4 = UpBlock(num_channel, 3, is_last=True)
                                                
                                                def forward(self, inputs):
                                                    down1 = self.down1(inputs)
                                                    down2 = self.down2(down1)
                                                    down3 = self.down3(down2)
                                                    down4 = self.down4(down3)
                                                    down4 = self.res_blocks(down4)
                                                    up1 = self.up1(down4)
                                                    up2 = self.up2(up1+down3)
                                                    up3 = self.up3(up2+down2)
                                                    up4 = self.up4(up3+down1)
                                                    return up4
                                                    weight = torch.load('weight.pth', map_location='cpu')
                                                    model = SimpleGenerator()
                                                    model.load_state_dict(weight)
                                                    model.eval()
                                                    
                                                    img = cv2.imread(r'input.jpg')
                                                    
                                                    image = img/127.5 - 1
                                                    image = image.transpose(2, 0, 1)
                                                    image = torch.tensor(image).unsqueeze(0)
                                                    output = model(image.float())
                                                    output = output.squeeze(0).detach().numpy()
                                                    output = output.transpose(1, 2, 0)
                                                    output = (output + 1) * 127.5
                                                    output = np.clip(output, 0, 255).astype(np.uint8)
                                                    cv2.imwrite('output.jpg', output)### unterminated keywords

需要完整源码,可以私信。

相关文章

网友评论

    本文标题:Python将头像照片转换为漫画,采用GAN深度学习,无噪点

    本文链接:https://www.haomeiwen.com/subject/oslssrtx.html