Python目标检测

作者: 西萌XXX | 来源:发表于2021-09-08 17:42 被阅读0次

    本文介绍

    python, yolov算法目标检测基础框架,可用于检测图片,视频,实时的摄像头监控,结果也可以很好的保存。我的opencv-python 版本是4.5.3.56, python版本是3.8.10。本文coco.name, yolo-festest-xl.cfg, yolo-fastest-xl.weights等文件可从 https://github.com/dog-qiuqiu/Yolo-Fastest下载获得

    import cv2 as cv
    import argparse
    import sys
    import numpy as np
    import os.path
    
    confThreshold = 0.5
    nmsThreshold = 0.4
    inpWidth = 416
    inpHeight = 416
    
    parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
    parser.add_argument('--image', help='Path to image file.')
    parser.add_argument('--video', help='Path to video file.')
    args = parser.parse_args()                            ##在终端执行 python 文件名.py --视频名.mp4 就可以检测视频了
    
    

    获取coco文件的种类,根据种类标记不同的颜色

    classesFile = "data/coco.names";
    classes = None
    with open(classesFile, 'rt') as f:
        classes = f.read().rstrip('\n').split('\n')     ##将coco文件中所有的类别放在变量里
    
    colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")  ##根据种类标记不同的颜色
    modelConfiguration = "data/yolo-fastest-xl.cfg"
    modelWeights = "model/yolo-fastest-xl.weights"
    
    net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights) ####第一参数是每一层的信息,第二个参数是训练好的模型
    net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)  ####设置DNN后端为Opencv
    net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)         ####目标设置为cpu
    

    获取输出层的名称

    def getOutputsNames(net):
        layersNames = net.getLayerNames()  ##网络所有层
        return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
    
    def drawPred(color, classId, conf, left, top, right, bottom):
        cv.rectangle(frame, (left, top), (right, bottom), color, 3)
    
        label = '%.2f' % conf
    
        ##类别和置信度
        if classes:
            assert (classId < len(classes))
            label = '%s:%s' % (classes[classId], label)
    
        # 在检测框顶部显示标签
        labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine),
                     (255, 255, 255), cv.FILLED)
        cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, color, 1)  #color是上面定义的随机色
    
    

    去掉一些置信度低的标签框,扫描从网络输出的所有边界框,只保留置信度高的,将框的类标签指定为得分最高的类。

    def postprocess(frame, outs):
        frameHeight = frame.shape[0]
        frameWidth = frame.shape[1]
    
        classIds = []
        confidences = []
        boxes = []
    
        classIds = []
        confidences = []
        boxes = []
        for out in outs:
            for detection in out:
                scores = detection[5:]
                classId = np.argmax(scores)
                confidence = scores[classId]
                if confidence > confThreshold:               #可以调置信度大小
                    center_x = int(detection[0] * frameWidth)
                    center_y = int(detection[1] * frameHeight)
                    width = int(detection[2] * frameWidth)
                    height = int(detection[3] * frameHeight)
                    left = int(center_x - width / 2)
                    top = int(center_y - height / 2)
                    classIds.append(classId)
                    confidences.append(float(confidence))
                    boxes.append([left, top, width, height])
    
        # 消除冗余的重叠框和置信度低的
        indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
        for i in indices:
            i = i[0]
            box = boxes[i]
            left = box[0]
            top = box[1]
            width = box[2]
            height = box[3]
            color = [int(c) for c in colors[classIds[i]]]
            drawPred(color, classIds[i], confidences[i], left, top, left + width, top + height)
    

    输入,可以是图片,视频,摄像头。 在终端执行 python 文件名.py --视频名.mp4 就可以检测视频了。

    winName = 'Deep learning object detection in OpenCV'  ##结果标题名称
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    
    outputFile = "yolo_out_py.avi"
    if (args.image):
        # 图像文件
        if not os.path.isfile(args.image):
            print("Input image file ", args.image, " doesn't exist")
            sys.exit(1)
        cap = cv.VideoCapture(args.image)
        outputFile = args.image[:-4] + '_yolo_out_py.jpg'
    elif (args.video):
        # 视频文件
        if not os.path.isfile(args.video):
            print("Input video file ", args.video, " doesn't exist")
            sys.exit(1)
        else:
            print('input_video')
        cap = cv.VideoCapture(args.video)
        outputFile = args.video[:-4] + '_yolo_out_py.avi'
    else:
        # 摄像头流
        #cap = cv.VideoCapture('0')  ##可支持rtsp,  http://admin:admin@ip:端口号(8081)  可用手机下载IP摄像头可获取
        cap = cv.VideoCapture(0)
    # Get the video writer initialized to save the output video
    if (not args.image):
        vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
                                    (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)), round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
    
    
    while cv.waitKey(1) < 0:
    
        # 读视频
        hasFrame, frame = cap.read()
    
        if not hasFrame:
            print("完成 !!!")
            print("输出文件 ", outputFile)
            cv.waitKey(3000)  ##响应时间毫秒
            # Release device
            cap.release()
            break
    
       
        blob = cv.dnn.blobFromImage(frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False)
    
       
        net.setInput(blob)
       
        outs = net.forward(getOutputsNames(net))
       ##过滤一些置信度低的框
        postprocess(frame, outs)
    
        ##结果展示下可能性
        t, _ = net.getPerfProfile()
        label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
        cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    
        # 保存结果
        if (args.image):
            cv.imwrite(outputFile, frame.astype(np.uint8));
        else:
            vid_writer.write(frame.astype(np.uint8))
        cv.imshow(winName, frame)
    
    
    

    完整代码如下

    import cv2 as cv
    import argparse
    import sys
    import numpy as np
    import os.path
    
    confThreshold = 0.5
    nmsThreshold = 0.4
    inpWidth = 416
    inpHeight = 416
    
    parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
    parser.add_argument('--image', help='Path to image file.')
    parser.add_argument('--video', help='Path to video file.')
    args = parser.parse_args()                            ##在终端执行 python 文件名.py --视频名.mp4 就可以检测视频了
    
    
    
    classesFile = "data/coco.names";
    classes = None
    with open(classesFile, 'rt') as f:
        classes = f.read().rstrip('\n').split('\n')     ##将coco文件中所有的类别放在变量里
    
    colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")  ##根据种类标记不同的颜色
    modelConfiguration = "data/yolo-fastest-xl.cfg"
    modelWeights = "model/yolo-fastest-xl.weights"
    
    net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights) ####第一参数是每一层的信息,第二个参数是训练好的模型
    net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)  ####设置DNN后端为Opencv
    net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)         ####目标设置为cpu
    
    def getOutputsNames(net):
        layersNames = net.getLayerNames()  ##网络所有层
        return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
    
    def drawPred(color, classId, conf, left, top, right, bottom):
        cv.rectangle(frame, (left, top), (right, bottom), color, 3)
    
        label = '%.2f' % conf
    
        ##类别和置信度
        if classes:
            assert (classId < len(classes))
            label = '%s:%s' % (classes[classId], label)
    
        # 在检测框顶部显示标签
        labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine),
                     (255, 255, 255), cv.FILLED)
        cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, color, 1)  #color是上面定义的随机色
    
    def postprocess(frame, outs):
        frameHeight = frame.shape[0]
        frameWidth = frame.shape[1]
    
        classIds = []
        confidences = []
        boxes = []
    
        classIds = []
        confidences = []
        boxes = []
        for out in outs:
            for detection in out:
                scores = detection[5:]
                classId = np.argmax(scores)
                confidence = scores[classId]
                if confidence > confThreshold:               #可以调置信度大小
                    center_x = int(detection[0] * frameWidth)
                    center_y = int(detection[1] * frameHeight)
                    width = int(detection[2] * frameWidth)
                    height = int(detection[3] * frameHeight)
                    left = int(center_x - width / 2)
                    top = int(center_y - height / 2)
                    classIds.append(classId)
                    confidences.append(float(confidence))
                    boxes.append([left, top, width, height])
    
        # 消除冗余的重叠框和置信度低的
        indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
        for i in indices:
            i = i[0]
            box = boxes[i]
            left = box[0]
            top = box[1]
            width = box[2]
            height = box[3]
            color = [int(c) for c in colors[classIds[i]]]
            drawPred(color, classIds[i], confidences[i], left, top, left + width, top + height)
    
    #输入,可以是图片,视频,摄像头。 在终端执行 python 文件名.py --视频名.mp4 就可以检测视频了。
    winName = '目标检测'  ##结果标题名称     python .\yolov3.py --image cat.jpg可检测图片
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    
    outputFile = "res.avi"
    if (args.image):
        # 图像文件
        if not os.path.isfile(args.image):
            print("Input image file ", args.image, " doesn't exist")
            sys.exit(1)
        cap = cv.VideoCapture(args.image)
        outputFile = args.image[:-4] + '_yolo_out_py.jpg'
    elif (args.video):
        # 视频文件
        if not os.path.isfile(args.video):
            print("Input video file ", args.video, " doesn't exist")
            sys.exit(1)
        else:
            print('input_video')
        cap = cv.VideoCapture(args.video)
        outputFile = args.video[:-4] + '_yolo_out_py.avi'
    else:
        # 摄像头流
        #cap = cv.VideoCapture('0')  ##可支持rtsp,  http://admin:admin@ip:端口号(8081)  可用手机下载IP摄像头可获取
        cap = cv.VideoCapture(0)
    # Get the video writer initialized to save the output video
    if (not args.image):
        vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
                                    (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)), round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
    
    
    while cv.waitKey(1) < 0:
    
        # 读视频
        hasFrame, frame = cap.read()
    
        if not hasFrame:
            print("完成 !!!")
            print("输出文件 ", outputFile)
            cv.waitKey(3000)  ##响应时间毫秒
            # Release device
            cap.release()
            break
    
        blob = cv.dnn.blobFromImage(frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False)
        net.setInput(blob)
       
        outs = net.forward(getOutputsNames(net))
       ##过滤一些置信度低的框
        postprocess(frame, outs)
    
        ##结果展示下可能性
        t, _ = net.getPerfProfile()
        label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
        cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    
        # 保存结果
        if (args.image):
            cv.imwrite(outputFile, frame.astype(np.uint8));
        else:
            vid_writer.write(frame.astype(np.uint8))
        cv.imshow(winName, frame)
    
    

    相关文章

      网友评论

        本文标题:Python目标检测

        本文链接:https://www.haomeiwen.com/subject/vzvvwltx.html