美文网首页动态规划动态规划
leetcode-Partition Equal Subset

leetcode-Partition Equal Subset

作者: miky_zheng | 来源:发表于2019-02-14 10:24 被阅读0次
    Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
    
    Note:
    Each of the array element will not exceed 100.
    The array size will not exceed 200.
    Example 1:
    
    Input: [1, 5, 11, 5]
    
    Output: true
    
    Explanation: The array can be partitioned as [1, 5, 5] and [11].
    Example 2:
    
    Input: [1, 2, 3, 5]
    
    Output: false
    
    Explanation: The array cannot be partitioned into equal sum subsets.
    

    解:
    1.nums和一定是被2整除。
    2.定义一个一维的dp数组,其中dp[i]表示数字i是否是原数组的任意个子集合之和,那么我们我们最后只需要返回dp[target]就行了。我们初始化dp[0]为true,由于题目中限制了所有数字为正数,那么我们就不用担心会出现和为0或者负数的情况。
    3.关键问题就是要找出状态转移方程了,我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是状态转移方程如下:

    dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)

    public boolean canPartition(int[] nums) {
        int sum = 0;
        
        for (int num : nums) {
            sum += num;
        }
        
        if ((sum & 1) == 1) {
            return false;
        }
        sum /= 2;
    
        int n = nums.length;
        boolean[][] dp = new boolean[n+1][sum+1];
        for (int i = 0; i < dp.length; i++) {
            Arrays.fill(dp[i], false);
        }
        
        dp[0][0] = true;
        
        for (int i = 1; i < n+1; i++) {
            dp[i][0] = true;
        }
        for (int j = 1; j < sum+1; j++) {
            dp[0][j] = false;
        }
        
        for (int i = 1; i < n+1; i++) {
            for (int j = 1; j < sum+1; j++) {
                dp[i][j] = dp[i-1][j];
                if (j >= nums[i-1]) {
                    dp[i][j] = (dp[i][j] || dp[i-1][j-nums[i-1]]);
                }
            }
        }
       
        return dp[n][sum];
    }
    

    优化方法:

    public boolean canPartition(int[] nums) {
        int sum = 0;
        
        for (int num : nums) {
            sum += num;
        }
        
        if ((sum & 1) == 1) {
            return false;
        }
        sum /= 2;
        
        int n = nums.length;
        boolean[] dp = new boolean[sum+1];
        Arrays.fill(dp, false);
        dp[0] = true;
        
        for (int num : nums) {
            for (int i = sum; i > 0; i--) {
                if (i >= num) {
                    dp[i] = dp[i] || dp[i-num];
                }
            }
        }
        
        return dp[sum];
    }
    

    相关文章

      网友评论

        本文标题:leetcode-Partition Equal Subset

        本文链接:https://www.haomeiwen.com/subject/owvseqtx.html