前言:
HashMap 在 Java 和 Android 开发中非常常见。今天,我将带来HashMap 的全部源码分析,希望你们会喜欢。
本文基于版本 JDK 1.7,即 Java 7
1. 简介
1. 类定义
image/**
* Hash table based implementation of the <tt>Map</tt> interface. This
* implementation provides all of the optional map operations, and permits
* <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt>
* class is roughly equivalent to <tt>Hashtable</tt>, except that it is
* unsynchronized and permits nulls.) This class makes no guarantees as to
* the order of the map; in particular, it does not guarantee that the order
* will remain constant over time.
*
* <p>This implementation provides constant-time performance for the basic
* operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
* disperses the elements properly among the buckets. Iteration over
* collection views requires time proportional to the "capacity" of the
* <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
* of key-value mappings). Thus, it's very important not to set the initial
* capacity too high (or the load factor too low) if iteration performance is
* important.
*
* <p>An instance of <tt>HashMap</tt> has two parameters that affect its
* performance: <i>initial capacity</i> and <i>load factor</i>. The
* <i>capacity</i> is the number of buckets in the hash table, and the initial
* capacity is simply the capacity at the time the hash table is created. The
* <i>load factor</i> is a measure of how full the hash table is allowed to
* get before its capacity is automatically increased. When the number of
* entries in the hash table exceeds the product of the load factor and the
* current capacity, the hash table is <i>rehashed</i> (that is, internal data
* structures are rebuilt) so that the hash table has approximately twice the
* number of buckets.
*
* <p>As a general rule, the default load factor (.75) offers a good
* tradeoff between time and space costs. Higher values decrease the
* space overhead but increase the lookup cost (reflected in most of
* the operations of the <tt>HashMap</tt> class, including
* <tt>get</tt> and <tt>put</tt>). The expected number of entries in
* the map and its load factor should be taken into account when
* setting its initial capacity, so as to minimize the number of
* rehash operations. If the initial capacity is greater than the
* maximum number of entries divided by the load factor, no rehash
* operations will ever occur.
*
* <p>If many mappings are to be stored in a <tt>HashMap</tt>
* instance, creating it with a sufficiently large capacity will allow
* the mappings to be stored more efficiently than letting it perform
* automatic rehashing as needed to grow the table. Note that using
* many keys with the same {@code hashCode()} is a sure way to slow
* down performance of any hash table. To ameliorate impact, when keys
* are {@link Comparable}, this class may use comparison order among
* keys to help break ties.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a hash map concurrently, and at least one of
* the threads modifies the map structurally, it <i>must</i> be
* synchronized externally. (A structural modification is any operation
* that adds or deletes one or more mappings; merely changing the value
* associated with a key that an instance already contains is not a
* structural modification.) This is typically accomplished by
* synchronizing on some object that naturally encapsulates the map.
*
* If no such object exists, the map should be "wrapped" using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the map:<pre>
* Map m = Collections.synchronizedMap(new HashMap(...));</pre>
*
* <p>The iterators returned by all of this class's "collection view methods"
* are <i>fail-fast</i>: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* <tt>remove</tt> method, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author Doug Lea
* @author Josh Bloch
* @author Arthur van Hoff
* @author Neal Gafter
* @see Object#hashCode()
* @see Collection
* @see Map
* @see TreeMap
* @see Hashtable
* @since 1.2
*/
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
主要介绍
image2.数据结构
2.1 具体描述
HashMap 采用的数据结构 = 数组(主) + 单链表(副),具体描述如下:
image该数据结构方式也称:拉链法 有兴趣可以参考:开放定址法(线性探测),拉链法 -Hash算法
2.2 具体描述
image2.3 存储流程
image2.4 数组元素 & 链表节点的 实现类
- HashMap中的数组元素 & 链表节点 采用 Entry类 实现,如下图所示:
- 即 HashMap的本质 = 1个存储Entry类对象的数组 + 多个单链表
- Entry对象本质 = 1个映射(键 - 值对),属性包括:键(key)、值(value) & 下1节点( next) = 单链表的指针 = 也是一个Entry对象,用于解决hash冲突
- 该类的源码分析如下
具体分析请看注释
/**
* Entry类实现了Map.Entry接口
* 即 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/
static class Entry<K,V> implements Map.Entry<K,V> {
final K key; // 键
V value; // 值
Entry<K,V> next; // 指向下一个节点 ,也是一个Entry对象,从而形成解决hash冲突的单链表
int hash; // hash值
/**
* 构造方法,创建一个Entry
* 参数:哈希值h,键值k,值v、下一个节点n
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
// 返回 与 此项 对应的键
public final K getKey() {
return key;
}
// 返回 与 此项 对应的值
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
/**
* equals()
* 作用:判断2个Entry是否相等,必须key和value都相等,才返回true
*/
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
/**
* hashCode()
*/
public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}
public final String toString() {
return getKey() + "=" + getValue();
}
/**
* 当向HashMap中添加元素时,即调用put(k,v)时,
* 对已经在HashMap中k位置进行v的覆盖时,会调用此方法
* 此处没做任何处理
*/
void recordAccess(HashMap<K,V> m) {
}
/**
* 当从HashMap中删除了一个Entry时,会调用该函数
* 此处没做任何处理
*/
void recordRemoval(HashMap<K,V> m) {
}
}
具体使用
3.1 主要使用API(方法、函数)
V get(Object key); // 获得指定键的值
V put(K key, V value); // 添加键值对
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
Set<K> keySet(); // 单独抽取key序列,将所有key生成一个Set
Collection<V> values(); // 单独value序列,将所有value生成一个Collection
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
3.2 使用流程
在具体使用时,主要流程是:
- [x] 声明1个 HashMap的对象
- [x] 向 HashMap 添加数据(成对 放入 键 - 值对)
- [x] 获取 HashMap 的某个数据
- [x] 获取 HashMap 的全部数据:遍历HashMap
示例代码:
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class HashMapTest {
public static void main(String[] args) {
/**
* 1. 声明1个 HashMap的对象
*/
Map<String, Integer> map = new HashMap<String, Integer>();
/**
* 2. 向HashMap添加数据(成对 放入 键 - 值对)
*/
map.put("Android", 1);
map.put("Java", 2);
map.put("iOS", 3);
map.put("数据挖掘", 4);
map.put("产品经理", 5);
/**
* 3. 获取 HashMap 的某个数据
*/
System.out.println("key = 产品经理时的值为:" + map.get("产品经理"));
/**
* 4. 获取 HashMap 的全部数据:遍历HashMap
* 核心思想:
* 步骤1:获得key-value对(Entry) 或 key 或 value的Set集合
* 步骤2:遍历上述Set集合(使用for循环 、 迭代器(Iterator)均可)
* 方法共有3种:分别针对 key-value对(Entry) 或 key 或 value
*/
// 方法1:获得key-value的Set集合 再遍历
System.out.println("方法1");
// 1. 获得key-value对(Entry)的Set集合
Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
// 2. 遍历Set集合,从而获取key-value
// 2.1 通过for循环
for(Map.Entry<String, Integer> entry : entrySet){
System.out.print(entry.getKey());
System.out.println(entry.getValue());
}
System.out.println("----------");
// 2.2 通过迭代器:先获得key-value对(Entry)的Iterator,再循环遍历
Iterator iter1 = entrySet.iterator();
while (iter1.hasNext()) {
// 遍历时,需先获取entry,再分别获取key、value
Map.Entry entry = (Map.Entry) iter1.next();
System.out.print((String) entry.getKey());
System.out.println((Integer) entry.getValue());
}
// 方法2:获得key的Set集合 再遍历
System.out.println("方法2");
// 1. 获得key的Set集合
Set<String> keySet = map.keySet();
// 2. 遍历Set集合,从而获取key,再获取value
// 2.1 通过for循环
for(String key : keySet){
System.out.print(key);
System.out.println(map.get(key));
}
System.out.println("----------");
// 2.2 通过迭代器:先获得key的Iterator,再循环遍历
Iterator iter2 = keySet.iterator();
String key = null;
while (iter2.hasNext()) {
key = (String)iter2.next();
System.out.print(key);
System.out.println(map.get(key));
}
// 方法3:获得value的Set集合 再遍历
System.out.println("方法3");
// 1. 获得value的Set集合
Collection valueSet = map.values();
// 2. 遍历Set集合,从而获取value
// 2.1 获得values 的Iterator
Iterator iter3 = valueSet.iterator();
// 2.2 通过遍历,直接获取value
while (iter3.hasNext()) {
System.out.println(iter3.next());
}
}
}
// 注:对于遍历方式,推荐使用针对 key-value对(Entry)的方式:效率高
// 原因:
// 1. 对于 遍历keySet 、valueSet,实质上 = 遍历了2次:1 = 转为 iterator 迭代器遍历、2 = 从 HashMap 中取出 key 的 value 操作(通过 key 值 hashCode 和 equals 索引)
// 2. 对于 遍历 entrySet ,实质 = 遍历了1次 = 获取存储实体Entry(存储了key 和 value )
基础知识:HashMap中的重要参数(变量)
- 在进行真正的源码分析前,先讲解HashMap中的重要参数(变量)
- HashMap中的主要参数 = 容量、加载因子、扩容阈值
- 具体介绍如下
// 1. 容量(capacity): HashMap中数组的长度
// a. 容量范围:必须是2的幂 & <最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
// 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量 = 2的30次方(若传入的容量过大,将被最大值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;
// 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
// a. 加载因子越大、填满的元素越多 = 空间利用率高、但冲突的机会加大、查找效率变低(因为链表变长了)
// b. 加载因子越小、填满的元素越少 = 空间利用率小、冲突的机会减小、查找效率高(链表不长)
// 实际加载因子
final float loadFactor;
// 默认加载因子 = 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量)
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 x 加载因子
int threshold;
// 4. 其他
// 存储数据的Entry类型 数组,长度 = 2的幂
// HashMap的实现方式 = 拉链法,Entry数组上的每个元素本质上是一个单向链表
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
// HashMap的大小,即 HashMap中存储的键值对的数量
transient int size;
参考示意图:
image
此处 详细说明 加载因子
image源码分析
- 本次的源码分析主要是根据 使用步骤
- 进行相关函数的详细分析
主要分析内容如下
步骤1:声明1个 HashMap的对象
具体源码:
/**
* 函数使用原型
*/
Map<String,Integer> map = new HashMap<String,Integer>();
/**
* 源码分析:主要是HashMap的构造函数 = 4个
* 仅贴出关于HashMap构造函数的源码
*/
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable{
// 省略上节阐述的参数
/**
* 构造函数1:默认构造函数(无参)
* 加载因子 & 容量 = 默认 = 0.75、16
*/
public HashMap() {
// 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
// 传入的指定容量 & 加载因子 = 默认
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数2:指定“容量大小”的构造函数
* 加载因子 = 默认 = 0.75 、容量 = 指定大小
*/
public HashMap(int initialCapacity) {
// 实际上是调用指定“容量大小”和“加载因子”的构造函数
// 只是在传入的加载因子参数 = 默认加载因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数3:指定“容量大小”和“加载因子”的构造函数
* 加载因子 & 容量 = 自己指定
*/
public HashMap(int initialCapacity, float loadFactor) {
// HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 设置 加载因子
this.loadFactor = loadFactor;
// 设置 扩容阈值 = 初始容量
// 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解
threshold = initialCapacity;
init(); // 一个空方法用于未来的子对象扩展
}
/**
* 构造函数4:包含“子Map”的构造函数
* 即 构造出来的HashMap包含传入Map的映射关系
* 加载因子 & 容量 = 默认
*/
public HashMap(Map<? extends K, ? extends V> m) {
// 设置容量大小 & 加载因子 = 默认
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 该方法用于初始化 数组 & 阈值,下面会详细说明
inflateTable(threshold);
// 将传入的子Map中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
}
即 初始化数组(table)、扩容阈值(threshold)
注:
- 此处仅用于接收初始容量大小(capacity)、加载因子(Load factor),但仍无真正初始化哈希表,即初始化存储数组table
- 此处先给出结论:真正初始化哈希表(初始化存储数组table)是在第1次添加键值对时,即第1次调用put()时。下面会详细说明
至此,关于HashMap的构造函数讲解完毕。
步骤2:向HashMap添加数据(成对 放入 键 - 值对)
添加数据的流程如下
image注:为了让大家有个感性的认识,只是简单的画出存储流程,更加详细 & 具体的存储流程会在下面源码分析中给出
源码分析:
/**
* 函数使用原型
*/
map.put("Android", 1);
map.put("Java", 2);
map.put("iOS", 3);
map.put("数据挖掘", 4);
map.put("产品经理", 5);
/**
* 源码分析:主要分析: HashMap的put函数
*/
public V put(K key, V value)
(分析1)// 1. 若 哈希表未初始化(即 table为空)
// 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 2. 判断key是否为空值null
(分析2)// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
// (本质:key = Null时,hash值 = 0,故存放到table[0]中)
// 该位置永远只有1个value,新传进来的value会覆盖旧的value
if (key == null)
return putForNullKey(value);
(分析3) // 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
// a. 根据键值key计算hash值
int hash = hash(key);
// b. 根据hash值 最终获得 key对应存放的数组Table中位置
int i = indexFor(hash, table.length);
// 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
(分析4)// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //并返回旧的value
}
}
modCount++;
(分析5)// 3.2 若 该key不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
return null;
}
- 根据源码分析所作出的流程图
下面,我将根据上述流程的5个分析点进行详细讲解
分析1:初始化哈希表
/**
* 函数使用原型
*/
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
/**
* 源码分析:inflateTable(threshold);
*/
private void inflateTable(int toSize) {
// 1. 将传入的容量大小转化为:>传入容量大小的最小的2的次幂
// 即如果传入的是容量大小是19,那么转化后,初始化容量大小为32(即2的5次幂)
int capacity = roundUpToPowerOf2(toSize);->>分析1
// 2. 重新计算阈值 threshold = 容量 * 加载因子
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
// 3. 使用计算后的初始容量(已经是2的次幂) 初始化数组table(作为数组长度)
// 即 哈希表的容量大小 = 数组大小(长度)
table = new Entry[capacity]; //用该容量初始化table
initHashSeedAsNeeded(capacity);
}
/**
* 分析1:roundUpToPowerOf2(toSize)
* 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
* 特别注意:容量大小必须为2的幂,该原因在下面的讲解会详细分析
*/
private static int roundUpToPowerOf2(int number) {
//若 容量超过了最大值,初始化容量设置为最大值 ;否则,设置为:>传入容量大小的最小的2的次幂
return number >= MAXIMUM_CAPACITY ?
MAXIMUM_CAPACITY : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
分析2:当 key ==null时,将该 key-value 的存储位置规定为数组table 中的第1个位置,即table [0]
/**
* 函数使用原型
*/
if (key == null)
return putForNullKey(value);
/**
* 源码分析:putForNullKey(value)
*/
private V putForNullKey(V value) {
// 遍历以table[0]为首的链表,寻找是否存在key==null 对应的键值对
// 1. 若有:则用新value 替换 旧value;同时返回旧的value值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 2 .若无key==null的键,那么调用addEntry(),将空键 & 对应的值封装到Entry中,并放到table[0]中
addEntry(0, null, value, 0);
// 注:
// a. addEntry()的第1个参数 = hash值 = 传入0
// b. 即 说明:当key = null时,也有hash值 = 0,所以HashMap的key 可为null
// c. 对比HashTable,由于HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
// d. 此处只需知道是将 key-value 添加到HashMap中即可,关于addEntry()的源码分析将等到下面再详细说明,
return null;
}
从此处可以看出:
- HashMap的键key 可为null(区别于 HashTable的key 不可为null)
- HashMap的键key 可为null且只能为1个,但值value可为null且为多个
分析3:计算存放数组 table 中的位置(即 数组下标 or 索引)
/**
* 函数使用原型
* 主要分为2步:计算hash值、根据hash值再计算得出最后数组位置
*/
// a. 根据键值key计算hash值 ->> 分析1
int hash = hash(key);
// b. 根据hash值 最终获得 key对应存放的数组Table中位置 ->> 分析2
int i = indexFor(hash, table.length);
/**
* 源码分析1:hash(key)
* 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
* JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
* JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
*/
// JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
static final int hash(int h) {
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
// 1. 取hashCode值: h = key.hashCode()
// 2. 高位参与低位的运算:h ^ (h >>> 16)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
// a. 当key = null时,hash值 = 0,所以HashMap的key 可为null
// 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
// b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
}
/**
* 函数源码分析2:indexFor(hash, table.length)
* JDK 1.8中实际上无该函数,但原理相同,即具备类似作用的函数
*/
static int indexFor(int h, int length) {
return h & (length-1);
// 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
}
总结 计算存放在数组 table 中的位置(即数组下标、索引)的过程
image在了解 如何计算存放数组table 中的位置 后,所谓 知其然 而 需知其所以然,下面我将讲解为什么要这样计算,即主要解答以下3个问题:
- 为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
- 为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
- 为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
在回答这3个问题前,请大家记住一个核心思想:
所有处理的根本目的,都是为了提高 存储key-value的数组下标位置 的随机性 & 分布均匀性,尽量避免出现hash值冲突。即:对于不同key,存储的数组下标位置要尽可能不一样
问题1:为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
- 结论:容易出现 哈希码 与 数组大小范围不匹配的情况,即 计算出来的哈希码可能 不在数组大小范围内,从而导致无法匹配存储位置
- 原因描述:
- 为了解决 “哈希码与数组大小范围不匹配” 的问题,HashMap给出了解决方案:哈希码 与运算(&) (数组长度-1);请继续问题2
问题2:为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
- 结论:容易出现 哈希码 与 数组大小范围不匹配的情况,即 计算出来的哈希码可能 不在数组大小范围内,从而导致无法匹配存储位置
- 原因描述
问题3:为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
-
结论:加大哈希码低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性 & 均匀性,最终减少Hash冲突
-
具体描述
至此,关于怎么计算 key-value 值存储在HashMap数组位置 & 为什么要这么计算,讲解完毕。
分析4:若对应的key已存在,则 使用 新value 替换 旧value
注:当发生 Hash冲突时,为了保证 键key的唯一性哈希表并不会马上在链表中插入新数据,而是先查找该 key是否已存在,若已存在,则替换即可
/**
* 函数使用原型
*/
// 2. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //并返回旧的value
}
}
modCount++;
// 2.2 若 该key不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
return null;
分析5:若对应的key不存在,则将该“key-value”添加到数组table的对应位置中
函数源码分析如下
/**
* 函数使用原型
*/
// 2. 判断该key对应的值是否已存在
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若该key对应的值已存在,则用新的value取代旧的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 2.2 若 该key对应的值不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
/**
* 源码分析:addEntry(hash, key, value, i)
* 作用:添加键值对(Entry )到 HashMap中
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
// 参数3 = 插入数组table的索引位置 = 数组下标
// 1. 插入前,先判断容量是否足够
// 1.1 若不足够,则进行扩容(2倍)、重新计算Hash值、重新计算存储数组下标
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length); // a. 扩容2倍 --> 分析1
hash = (null != key) ? hash(key) : 0; // b. 重新计算该Key对应的hash值
bucketIndex = indexFor(hash, table.length); // c. 重新计算该Key对应的hash值的存储数组下标位置
}
// 1.2 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中--> 分析2
createEntry(hash, key, value, bucketIndex);
}
/**
* 分析1:resize(2 * table.length)
* 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
*/
void resize(int newCapacity) {
// 1. 保存旧数组(old table)
Entry[] oldTable = table;
// 2. 保存旧容量(old capacity ),即数组长度
int oldCapacity = oldTable.length;
// 3. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4. 根据新容量(2倍容量)新建1个数组,即新table
Entry[] newTable = new Entry[newCapacity];
// 5. 将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1
transfer(newTable);
// 6. 新数组table引用到HashMap的table属性上
table = newTable;
// 7. 重新设置阈值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
* 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
*/
void transfer(Entry[] newTable) {
// 1. src引用了旧数组
Entry[] src = table;
// 2. 获取新数组的大小 = 获取新容量大小
int newCapacity = newTable.length;
// 3. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
for (int j = 0; j < src.length; j++) {
// 3.1 取得旧数组的每个元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
src[j] = null;
do {
// 3.3 遍历 以该数组元素为首 的链表
// 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
Entry<K,V> next = e.next;
// 3.4 重新计算每个元素的存储位置
int i = indexFor(e.hash, newCapacity);
// 3.5 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
// 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
e.next = newTable[i];
newTable[i] = e;
// 3.6 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
e = next;
} while (e != null);
// 如此不断循环,直到遍历完数组上的所有数据元素
}
}
}
/**
* 分析2:createEntry(hash, key, value, bucketIndex);
* 作用: 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
// 1. 把table中该位置原来的Entry保存
Entry<K,V> e = table[bucketIndex];
// 2. 在table中该位置新建一个Entry:将原头结点位置(数组上)的键值对 放入到(链表)后1个节点中、将需插入的键值对 放入到头结点中(数组上)-> 从而形成链表
// 即 在插入元素时,是在链表头插入的,table中的每个位置永远只保存最新插入的Entry,旧的Entry则放入到链表中(即 解决Hash冲突)
table[bucketIndex] = new Entry<>(hash, key, value, e);
// 3. 哈希表的键值对数量计数增加
size++;
}
此处有2点需特别注意:键值对的添加方式 & 扩容机制
参考:
声明:此为原创,转载请联系作者
作者:微信公众号添加公众号-遛狗的程序员 ,或者可以扫描以下二维码关注相关技术文章。
qrcode_for_gh_1ba0785324d6_430.jpg当然喜爱技术,乐于分享的你也可以可以添加作者微信号:
WXCD.jpeg
网友评论