Numpy

作者: Sun_atom | 来源:发表于2017-11-29 21:32 被阅读0次

参考[Numpy文档]https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Numpy的安装

MacOS

#使用Python3+
pip3 install numpy

#使用Python2+
pip install numpy

Ubuntu

在terminal中运行:
sudo apt-get install python-numpy

Numpy的属性

使用Numpy首先应当导入Module

import numpy as np

列表转化为矩阵

array = np.array([[1,2,3],[2,3,4]]
print(array)
"""
array([[1, 2, 3],
       [2, 3, 4]])
"""

Numpy的重要属性:

nidm:维度
shape:行数和列数
size:元素个数

print('number of dim:',array.ndim)  # 维度
# number of dim: 2

print('shape :',array.shape)    # 行数和列数
# shape : (2, 3)

print('size:',array.size)   # 元素个数
# size: 6

Numpy的创建array

关键字

array:创建数组
dtype:指定数据类型
zeros:创建数据全为0
ones:创建数据全为1
empty:创建数据接近0
arrange:按指定范围创建数据
linspace:创建线段

创建数组

 a = np.array([2,23,4])  #list 1d
print(a)
#[2,23,4]

指定数据的type

a = np.array([2,23,4],dtype=np.int)
print(a.dtype)
# int 64

a = np.array([2,23,4],dtype=np.int32)
print(a.dtype)
# int32

a = np.array([2,23,4],dtype=np.float)
print(a.dtype)
# float64

a = np.array([2,23,4],dtype=np.float32)
print(a.dtype)
# float32

创建特定数据

注意array与ndarray的区别,array一般只用来处理向量,功能也相对较少。ndarray可以处理多维矩阵。

a = np.array([[2,23,4],[2,32,4]])  # 2d 矩阵 2行3列
print(a)
"""
[[ 2 23  4]
 [ 2 32  4]]
"""
a = np.zeros((3,4)) # 数据全为0,3行4列
"""
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
"""

a = np.ones((3,4),dtype = np.int)  # 数据为1, 3行4列
"""
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
"""

a = np.empty((3,4)) # 数据为empty,3行4列
"""
array([[  0.00000000e+000,   4.94065646e-324,   9.88131292e-324,
          1.48219694e-323],
       [  1.97626258e-323,   2.47032823e-323,   2.96439388e-323,
          3.45845952e-323],
       [  3.95252517e-323,   4.44659081e-323,   4.94065646e-323,
          5.43472210e-323]])
"""

a = np.arange(10,20,2) # 10-19 的数据,2步长
"""
array([10, 12, 14, 16, 18])
"""

a = np.arange(12).reshape((3,4))    # 3行4列,0到11
"""
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
"""
a = np.linspace(1,10,20)    # 开始端1,结束端10,且分割成20个数据,生成线段
"""
array([  1.        ,   1.47368421,   1.94736842,   2.42105263,
         2.89473684,   3.36842105,   3.84210526,   4.31578947,
         4.78947368,   5.26315789,   5.73684211,   6.21052632,
         6.68421053,   7.15789474,   7.63157895,   8.10526316,
         8.57894737,   9.05263158,   9.52631579,  10.        ])
"""

a = np.linspace(1,10,20).reshape((5,4)) # 更改shape
"""
array([[  1.        ,   1.47368421,   1.94736842,   2.42105263],
       [  2.89473684,   3.36842105,   3.84210526,   4.31578947],
       [  4.78947368,   5.26315789,   5.73684211,   6.21052632],
       [  6.68421053,   7.15789474,   7.63157895,   8.10526316],
       [  8.57894737,   9.05263158,   9.52631579,  10.        ]])
"""

注意,这里调用的许多方法中的参数都是tuple,其中arange()函数中的步长可以是float,由于浮点数的性质可能在运算前不知道这样的操作会产生长度几何的数据,所以一般使用linspace()做代替。

Numpy基础运算

从一个脚本开始聊Numpy相关的运算:

import numpy as np
a=np.array([10,20,30,40])   # array([10, 20, 30, 40])
b=np.arange(4)              # array([0, 1, 2, 3])

Numpy的几种基本运算

矩阵的减法:

c = a - b  # array([10, 19, 28, 37])

矩阵加法:

c = a + b 

矩阵乘法: (这里的乘法指的是矩阵中的元素对应相乘)

c = a * b

矩阵乘方:

c=b**2  # array([0, 1, 4, 9])

Numpy中调用一些基本函数都需要从Numpy的Module中获得:

c=10*np.sin(a)  
# array([-5.44021111,  9.12945251, -9.88031624,  7.4511316 ])

对多维矩阵而言:

a=np.array([[1,1],[0,1]])
b=np.arange(4).reshape((2,2))

print(a)
# array([[1, 1],
#       [0, 1]])

print(b)
# array([[0, 1],
#       [2, 3]])

标准的矩阵相乘:

c_dot = np.dot(a,b)
# array([[2, 4],
#       [2, 3]])

针对大小比较而言,我们可以直接使用大小符号进行布尔运算,也可以通过Numpy自带的Module对最大值等数值特征进行计算:

import numpy as np
a=np.random.random((2,4))
print(a)
# array([[ 0.94692159,  0.20821798,  0.35339414,  0.2805278 ],
#       [ 0.04836775,  0.04023552,  0.44091941,  0.21665268]])

np.sum(a)   # 4.4043622002745959
np.min(a)   # 0.23651223533671784
np.max(a)   # 0.90438450240606416

print("a =",a)
# a = [[ 0.23651224  0.41900661  0.84869417  0.46456022]
# [ 0.60771087  0.9043845   0.36603285  0.55746074]]

print("sum =",np.sum(a,axis=1))
# sum = [ 1.96877324  2.43558896]

print("min =",np.min(a,axis=0))
# min = [ 0.23651224  0.41900661  0.36603285  0.46456022]

print("max =",np.max(a,axis=1))
# max = [ 0.84869417  0.9043845 ]

Numpy索引

import numpy as np
A = np.arange(2,14).reshape((3,4)) 

# array([[ 2, 3, 4, 5]
#        [ 6, 7, 8, 9]
#        [10,11,12,13]])
         
print(np.argmin(A))    # 0
print(np.argmax(A))    # 11

num中的基本统计运算

求平均:

print(np.mean(A))        # 7.5
print(np.average(A))     # 7.5
print(A.mean())

求中位数:

print(A.median())

求相邻和:

print(np.cumsum(A)) 

# [2 5 9 14 20 27 35 44 54 65 77 90]

求相邻差:

print(np.diff(A))    

# [[1 1 1]
#  [1 1 1]
#  [1 1 1]]

nonzero()函数(将所有非零元素的行与列坐标隔开,重构成两个分别关于行和列的矩阵):

print(np.nonzero(A))    

# (array([0,0,0,0,1,1,1,1,2,2,2,2]),array([0,1,2,3,0,1,2,3,0,1,2,3]))

排序(每一行从大到小):

import numpy as np
A = np.arange(14,2, -1).reshape((3,4)) 

# array([[14, 13, 12, 11],
#       [10,  9,  8,  7],
#       [ 6,  5,  4,  3]])

print(np.sort(A))    

# array([[11,12,13,14]
#        [ 7, 8, 9,10]
#        [ 3, 4, 5, 6]])

矩阵的转置:(这里的转置不适用与向量)

print(np.transpose(A))    
print(A.T)

# array([[14,10, 6]
#        [13, 9, 5]
#        [12, 8, 4]
#        [11, 7, 3]])
# array([[14,10, 6]
#        [13, 9, 5]
#        [12, 8, 4]
#        [11, 7, 3]])

有趣的clip()函数:

#clip(Array,Array_min,Array_max)
#Array指的是将要被执行用的矩阵,而后面的最小值最大值则用于让函数判断矩阵中元素是否有比最小值小的或者比最大值大的元素,并将这些指定的元素转换为最小值或者最大值。
print(A)
# array([[14,13,12,11]
#        [10, 9, 8, 7]
#        [ 6, 5, 4, 3]])

print(np.clip(A,5,9))    
# array([[ 9, 9, 9, 9]
#        [ 9, 9, 8, 7]
#        [ 6, 5, 5, 5]])

Numpy索引

一维索引

与一般的Python list 相同

多维索引

A = np.arange(3,15).reshape((3,4))
"""
array([[ 3,  4,  5,  6]
       [ 7,  8,  9, 10]
       [11, 12, 13, 14]])
"""
         
print(A[2])         
# [11 12 13 14]

取以上二位矩阵中的元素:

print(A[1][1])      # 8
print(A[1, 1])      # 8

元素的slice:

print(A[1, 1:3])    # [8 9]

迭代:

for row in A:         #遍历每一行
    print(row)
"""    
[ 3,  4,  5, 6]
[ 7,  8,  9, 10]
[11, 12, 13, 14]
"""

for column in A.T:
    print(column)
"""  
[ 3,  7,  11]
[ 4,  8,  12]
[ 5,  9,  13]
[ 6, 10,  14]
"""

flatten是一个展开性质的函数,将多维的矩阵展开成一行的数列。flat是一个迭代器,本身是object属性。

import numpy as np
A = np.arange(3,15).reshape((3,4))
         
print(A.flatten())   
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

for item in A.flat:
    print(item)
    
# 3
# 4
……
# 14

Numpy合并

np.vstack():按垂直方向的合并

import numpy as np
A = np.array([1,1,1])
B = np.array([2,2,2])
         
print(np.vstack((A,B)))    # vertical stack
"""
[[1,1,1]
 [2,2,2]]
"""

np.hstack():按水平方向的合并

D = np.hstack(A,B)
print(D)
# [1,1,1,2,2,2]

print(A.shape,D.shape)
# (3,) (6,)# [1,1,1,2,2,2]

print(A.shape,D.shape)
# (3,) (6,)

前一节中说的向量不可以使用 .T 进行转置操作,这里给出应当采用的方法:

print(A[np.newaxis,:])
# [[1 1 1]]

print(A[np.newaxis,:].shape)
# (1,3)

print(A[:,np.newaxis])
"""
[[1]
[1]
[1]]
"""

print(A[:,np.newaxis].shape)
# (3,1)

针对多个矩阵和序列的合并方法:

C = np.concatenate((A,B,B,A),axis=0)

print(C)
"""
array([[1],
       [1],
       [1],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [1],
       [1],
       [1]])
"""

D = np.concatenate((A,B,B,A),axis=1)

print(D)
"""
array([[1, 2, 2, 1],
       [1, 2, 2, 1],
       [1, 2, 2, 1]])
"""

Numpy分割

创建数据:

import numpy as np
A = np.arange(12).reshape((3, 4))
print(A)
"""
array([[ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11]])
"""

纵向分割:

print(np.split(A, 2, axis=1))  #只是等分成2份
"""
[array([[0, 1],
        [4, 5],
        [8, 9]]), array([[ 2,  3],
        [ 6,  7],
        [10, 11]])]
"""

横向分割:

print(np.split(A,2,axis=0))
# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]

不等量的分割:np.array_split()

print(np.array_split(A,3,axis=1))
"""
[array([[0, 1],
        [4, 5],
        [8, 9]]), array([[ 2],
        [ 6],
        [10]]), array([[ 3],
        [ 7],
        [11]])]
"""

其他分割:
np.vsplit()
np.hsplit()

print(np.vsplit(A, 3)) #等于 print(np.split(A, 3, axis=0))

# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]


print(np.hsplit(A, 2)) #等于 print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
       [4, 5],
       [8, 9]]), array([[ 2,  3],
        [ 6,  7],
        [10, 11]])]
"""

Numpy copy & deep copy

注意在Numpy中和一般的Python中变量赋值的区别:

= 的赋值带有关联性:

import numpy as np

a = np.arange(4)
# array([0, 1, 2, 3])

b = a
c = a
d = b

改变a的第一个值,b,c,d的第一个值也会改变:

a[0] = 11
print(a)
# array([11,  1,  2,  3])
#确认b,c,d是否与a相同
b is a  # True
c is a  # True
d is a  # True

d[1:3] = [22, 33]   # array([11, 22, 33,  3])
print(a)            # array([11, 22, 33,  3])
print(b)            # array([11, 22, 33,  3])
print(c)            # array([11, 22, 33,  3])

copy()的赋值方法没有关联性:

b = a.copy()    # deep copy
print(b)        # array([11, 22, 33,  3])
a[3] = 44
print(a)        # array([11, 22, 33, 44])
print(b)        # array([11, 22, 33,  3])

相关文章

  • 科学计算库numpy的执行示例

    numpy1 numpy2 numpy3 numpy4

  • numpy中的常量

    Constants 正无穷 numpy.inf numpy.Inf numpy.Infinity numpy.in...

  • NumPy学习资料

    Numpy 中文资料 NumPy 中文文档 NumPy 中文用户指南 NumPy 中文参考手册

  • Numpy基础

    安装Numpy Numpy Numpy属性 ndim:纬度 shape:行数和列数 size:元素个数 Numpy...

  • Numpy和Pandas基本操作速查

    """ numpy 基本操作 """'''安装 Numpy 的方法:pip install numpy''''''...

  • numpy 基础

    numpy 基础 导入numpy 版本 np常用方法 numpy.array 的基本属性 numpy.array ...

  • Numpy入门

    1、熟悉 numpy 的基础属性 2、numpy 创建 array 3、numpy的基础运算 4、numpy索引 ...

  • 学习:biopython的安装

    安装Numpy 因为使用biopython需要numpy的支持,所以需要先安装numpy。安装numpy过程如下:...

  • Numpy

    Numpy中文文档 # 基本语法 ``` import numpy myText = numpy.genfromt...

  • numpy运算

    numpy的与运算 numpy 中 argsort() numpy 中的布尔索引

网友评论

    本文标题:Numpy

    本文链接:https://www.haomeiwen.com/subject/pibpbxtx.html