美文网首页程序员
AI大模型企业应用实战(19)-RAG应用框架和解析器

AI大模型企业应用实战(19)-RAG应用框架和解析器

作者: JavaEdge | 来源:发表于2024-06-23 10:30 被阅读0次

    1 开源解析和拆分文档

    第三方工具去对文件解析拆分,将文件内容给提取出来,并将我们的文档内容去拆分成一个小的chunk。常见的PDF word mark down, JSON、HTML。都可以有很好的一些模块去把这些文件去进行一个东西去提取。

    1.1 优势

    • 支持丰富的文档类型
    • 每种文档多样化选择
    • 与开源框架无缝集成

    但有时效果非常差,来内容跟原始的文件内容差别大。

    2 PDF格式多样性

    复杂多变的文档格式,提高解析效果十分困难

    3 复杂文档格式解析问题

    文档内容质量将很大程度影响最终效果,文档处理过程涉及问题:

    3.1 内容不完整

    对文档的内容进行提取的时候,可能会发现提取出来的文档它的内容是会被截断的。跨页形式,提取出来它的上下页其实两部分内容就会被截断,导致文档内部分内容丢失,我们去解析图片或者是说双栏复杂的这种格式。它会有一部分内容的丢失。

    3.2 内容错误

    同一页PDF文件可能存在文本、表格、图片等混合。

    PDF解析过程中,同一页它不同段落其实会也会有不同标准的一些格式。按通用格式去提取解析就遇到同页不同段落格式不标准情况。

    3.3 文档格式

    像常见PDF md文件,需要去支持把这些各类型的文档格式的文件都给提取。

    3,4 边界场景

    代码块还有单元格这些,都是我们去去解析一个复杂文档格式中会遇到一些问题。

    4 PDF内容提取流程

    5 为啥解析文档后需要做知识片段拆分?

    5.1 Token限制

    • 绝大部分开源限制 <= 512 Tokens
    • bge_base、e5_large、m3e_base、text2vector_large_chinese、multilingnal-e5-base..

    5.2 效果影响

    • 召回效果:有限向量维度下表达较多的文档信息易产生失真
    • 回答效果:召回内容中包含与问题无关信息对LLM增加干扰

    5.3 成本控制

    • LLM费用:按照Token计费
    • 网络费用:按照流量计费

    6 Chunk拆分对最终效果的影响

    Chunk太长

    信息压缩失真

    Chunk太短

    表达缺失上下文;匹配分数容易变高

    Chunk跨主题

    内容关系脱节

    原文连续内容(含表格)被截断

    单个Chunk信息表达不完整,或含义相反

    干扰信息

    如空白、HTML、XML等格式,同等长度下减少有效信息、增加干扰信息

    主题和关系丢失

    缺失了主题和知识点之间的关系

    7 改进知识的拆分方案

    关注我,紧跟本系列专栏文章,咱们下篇再续!

    作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

    各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

    负责:

    • 中央/分销预订系统性能优化
    • 活动&券等营销中台建设
    • 交易平台及数据中台等架构和开发设计
    • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化
    • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

    参考:

    本文由博客一文多发平台 OpenWrite 发布!

    相关文章

      网友评论

        本文标题:AI大模型企业应用实战(19)-RAG应用框架和解析器

        本文链接:https://www.haomeiwen.com/subject/pnwlcjtx.html