Python多线程解析

作者: 一根薯条 | 来源:发表于2018-03-22 16:18 被阅读169次

概述

记得前些日子伞哥发过一个微博调侃过Python由于GIL锁的存在,所以现在死活想把自己和机器学习扯上关系。确实,由于这个全局解释锁的存在,任何时刻只有一个核在执行Python代码,这样就导致不能充分利用多核处理器的特性。但是,我们的程序也不总是在计算的,程序有IO密集型和CPU计算密集型。如果我们的程序需要等待用户输入,等待文件读写以及网络收发数据,那计算机就会把这些等待操作放到后台去处理,把CPU留出来用于计算。所以,虽然CPU密集型的程序用Python多线程确实无法提高效率,但是如果是IO密集型的程序,是可以使用多线程提高效率的。

接下来,让我们通过例子一步一步了解多线程:

利用threading模块使用多线程

Python标准库自带了两个多线程模块,分别是threadingthread,其中,thread是低级模块,threading是对thread的封装,一般,我们直接使用threading即可。下面来看一个简单的多线程例子:

import threading

def say_hello():
    print("Hello world!")

def main():
    for i in range(10):
        thread = threading.Thread(target=say_hello)
        thread.start()

main()

在这个例子中,我们首先定义了要多线程执行的函数say_hello,然后我们在主函数里创建了10个线程,target取值是say_hi,告诉线程要执行的函数,然后我们调用start()方法吩咐线程去执行这些线程。
这个程序最终会输出5个Hello world!,与["Hello world!" for i in range(10)]效果一致,那么为什么还要使用多线程呢,我们通过下面这个例子理解下多线程的意义:

import threading
import time

def say_hello():
    time.sleep(1)
    print("Hello world!")

def main():
    for i in range(10):
        thread = threading.Thread(target=say_hello)
        thread.start()

main()

在这个例子里,我们加了time.sleep(1)来模拟等待事件。现在如果用普通的循环来迭代,代码执行完需要至少5秒,而多线程运行只需要1秒多,减少了程序整体运行的时间。

给线程传参和线程常用方法

在上面的代码中,我们并没有给say_hello传参数,在多线程里传参很简单,只需要这样做就好了:

import threading

def say_hello(count, name):
    print("Hello world!", name)
    count -= 1

def main():
    name_list = ['Bob', 'Jack', 'Jone', 'Mike', 'David']
    for i in range(5):
        thread = threading.Thread(target=say_hello, args=(10, name_list[i]))
        thread.start()

main()

threading.Thread类中,常用的方法有:

  • isAlive: 检查线程是否在运行中
  • getName: 获取线程名称
  • setName: 设置线程名称
  • join:阻塞线程调用,直到线程中止
  • setDaemon:设置线程为守护线程
  • isDaemon: 判断线程是否是守护线程

通过继承创建线程

除了直接实例化threading.Thread对象,我们还可以通过继承threading.Thread来编写多线程的类。然后把多线程调用的函数携程一个run方法。方法如下:

import threading

class MyThread(threading.Thread):
      def __init__(self, count, name):
          super(MyThread, self).__init__()
          self.count = count
          self.name = name
     
      def run(self):
          while self.count > 10:
                print("hello", self.name) 
                self.count -= 1

线程与互斥锁

多个线程之间 内存是共享的,所以线程比进程轻量。多个线程是可以同时访问内存中的数据的,如果多个线程同时修改一个对象,那这份数据可能会被破坏,Python的threading类中提供了Lock方法,它会返回一个锁对象,一般通过lock.acquire()来获取锁,通过lock.release()来释放锁,对于那种只允许一个线程操作 的数据,一般把对其的操作放在lock.acquire()lock.release()中间。
无论在什么情况下,我们都要保证代码要释放锁,所以其他语言中一般把加锁和释放锁放在try/finally语句中。在Python中,其实我们可以用上下文管理器来简化代码,关于上下文管理器的介绍可以参考我前面的文章:上下文管理器,这里我们可以这样使用锁:

with lock:
    #lock processing

下面来看一个使用互斥锁的例子,在这个例子中,我们使用了全局变量,然后创建10个线程,每个线程做同样的事情,由于num是全局变量,而且每个线程都需要使用这个变量,因此存在着数据争用的问题,所以,我们就需要使用互斥锁保护这个全局变量:所有修改这个变量的线程在修改前都需要加锁,在increment函数中,我们通过with语句进行加锁。如下所示:

import threading

lock = threading.Lock()
num = 0


def increment(count):
    global num
    while count > 0:
        with lock:
            num += 1
        count -= 1

def main():
    threads = []
    for i in range(10):
        thread = threading.Thread(target=increment,args=(100,))
        thread.start()
        threads.append(thread)

    for thread in threads:
        thread.join()

    print("except value is 1000, real value is{}".format(num))
    
main()


有兴趣的读者可以试试把锁去掉是什么结果,实际上,我们永远得不到正确的结果。

对于这段代码,我们可以这样理解:

    threads = []
    for i in range(10):
        thread = thread.Threading(target=increment, args=(100,))
        thread.start()
        threads.append(thread)
 
    for thread in threads:
        thread.join()

第一个for循环,意思是吩咐十个线程去做target里面的事,执行完第一个for循环后就吩咐完了,但仅仅是只是吩咐完了,target里面的任务没有执行完,因为不知道是否执行完,所以还需要创建一个列表把他们都保存起来。对于第二个for循环,如果在第一个循环里 他们的target已经执行完了,那后面直接就join,不用等待,遇到有的线程没有执行完的,join 就阻塞调用,直到这些线程执行完。

线程安全队列queue

队列是线程间最常用的交换数据的形式,queue模块实现了线程安全的队列,有三种类型的队列:

  • queue Queue:FIFO(先进先出) 的队列。最常用的队列!
  • queue LifoQueue: LIFO(后进先出)的队列,最后加入队列的元素最先取出
  • queue PriorityQueue: 优先级队列,队列中的元素根据优先级排序。

下面是Queue类常用的方法:

  • empty: 判断队列是否为空
  • full: 判断队列是否已满
  • put: 向队列中添加元素
  • get: 从队列中取出元素
  • put_nowait: 非阻塞 向队列中添加元素
  • get_nowait: 非阻塞 从队列中取出元素
  • join:阻塞等待,直到所有任务完成

来看一个官方给的多线程模型:

def worker():
    while True:
    item = q.get()
    do_work()
    q.task_done()

q = Queue()

for i in range(thread_number):
    t = Thread(target=worker)
    t.daemon = True
    t.start()

for item in source():
    q.put(item)  

q.join()

之后会有一个线程池的例子运用Queue队列。写完后放链接!待续!

相关文章

  • python多线程

    python基础之多线程锁机制 GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析...

  • Python多线程解析

    概述 记得前些日子伞哥发过一个微博调侃过Python由于GIL锁的存在,所以现在死活想把自己和机器学习扯上关系。确...

  • GIL

    谈谈python的GIL、多线程、多进程 最近在看 Python 的多线程,经常我们会听到老手说:“python下...

  • iOS-多线程相关

    本篇涵盖多线程解析、应用等. 1.iOS多线程--彻底学会多线程之『RunLoop』2.iOS多线程--彻底学会多...

  • Python多线程编程——多线程编程中的加锁机制

    如果大家对Python中的多线程编程不是很了解,推荐大家阅读之前的两篇文章:Python多线程编程——多线程基础介...

  • python 多线程知识全面解析

    非阻塞启动线程 得到值如下,线程启动函数后,非阻塞执行 多线程并发处理 打印结果:每次运行三个线程,每个线程循环打...

  • 5-线程(补充)

    Python多线程原理与实战 目的: (1)了解python线程执行原理 (2)掌握多线程编程与线程同步 (3)了...

  • Python_提高

    GIL全局解释器锁 描述Python GIL的概念, 以及它对python多线程的影响?编写⼀个 多线程抓取⽹⻚的...

  • Python程序员都知道的入门知识の八

    目录【Python程序员都知道的入门知识】 1. 多线程threading、Queue Python的多线程由th...

  • Python多线程实现生产者消费者

    1. Python多线程介绍 Python提供了两个有关多线程的标准库,thread和threading。thre...

网友评论

    本文标题:Python多线程解析

    本文链接:https://www.haomeiwen.com/subject/pzsaqftx.html