TensorFlow-3: 用 feed-forward ne

作者: 不会停的蜗牛 | 来源:发表于2017-04-16 13:01 被阅读397次

    今天继续看 TensorFlow Mechanics 101:
    https://www.tensorflow.org/get_started/mnist/mechanics

    完整版教程可以看中文版tutorial:
    http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.html

    这一节讲了使用 MNIST 数据集训练并评估一个简易前馈神经网络(feed-forward neural network)

    input,output 和前两节是一样的:即划分数据集并预测图片的 label

    data_sets.train 55000个图像和标签(labels),作为主要训练集。
    data_sets.validation    5000个图像和标签,用于迭代验证训练准确度。
    data_sets.test  10000个图像和标签,用于最终测试训练准确度(trained accuracy)。
    

    主要有两个代码:

    mnist.py
    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist.py

    • 构建一个全连接网络,由 2 个隐藏层,1 个 `softmax_linearv 输出构成
    • 定义损失函数,用 `cross entropyv
    • 定义训练时的优化器,用 GradientDescentOptimizer
    • 定义评价函数,用 tf.nn.in_top_k

    **fully_connected_feed.py **
    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/fully_connected_feed.py

    • placeholder_inputs 传入 batch size,得到 image 和 label 的两个placeholder
    • 定义生成 feed_dict 的函数,key 是 placeholders,value 是 data
    • 定义 do_eval 函数,每隔 1000 个训练步骤,就对模型进行以下评估,分别作用于训练集、验证集和测试集
    • 训练时:
      • 导入数据
      • 得到 image 和 label 两个 placeholder
      • 传入 mnist.inference 定义的 NN, 得到 predictions
      • 将 predictions 传给 mnist.loss 计算 loss
      • loss 传给 mnist.training 进行优化训练
      • 再用 mnist.evaluation 评价预测值和实际值

    代码中涉及到下面几个函数:

    with tf.Graph().as_default():
    即所有已经构建的操作都要与默认的 tf.Graph 全局实例关联起来,tf.Graph 实例是一系列可以作为整体执行的操作

    summary = tf.summary.merge_all():
    为了释放 TensorBoard 所使用的 events file,所有的即时数据都要在图表构建时合并至一个操作 op 中,每次运行 summary 时,都会向 events file 中写入最新的即时数据

    summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph):
    用于写入包含了图表本身和即时数据具体值的 events file。

    saver = tf.train.Saver():
    就是向训练文件夹中写入包含了当前所有可训练变量值 checkpoint file

    with tf.name_scope('hidden1'):
    主要用于管理一个图里面的各种 op,返回的是一个以 scope_name 命名的 context manager,一个 graph 会维护一个 name_space 的堆,实现一种层次化的管理,避免各个 op 之间命名冲突。例如,如果额外使用 tf.get_variable() 定义的变量是不会被 tf.name_scope() 当中的名字所影响的

    tf.nn.in_top_k(logits, labels, 1):
    意思是在 K 个最有可能的预测中如果可以发现 true,就将输出标记为 correct。本文 K 为 1,也就是只有在预测是 true 时,才判定它是 correct。


    推荐阅读 历史技术博文链接汇总
    http://www.jianshu.com/p/28f02bb59fe5
    也许可以找到你想要的

    相关文章

      网友评论

        本文标题:TensorFlow-3: 用 feed-forward ne

        本文链接:https://www.haomeiwen.com/subject/pzwvattx.html