电脑环境:Windows7-64bit、Anaconda3-4.2.0(对应的python版本是3.5.2),如果您安装的是3.6版本的,选择下载对应版本的TensorFlow和xgboost即可。
Win10系统也可以参照此方法安装,已经经过测试了,可放心。
Anaconda下载链接为:https://repo.continuum.io/archive/。
Tensorflow和xgboost的whl文件下载链接为:http://www.lfd.uci.edu/~gohlke/pythonlibs/。


1、拷贝tensorflow-1.3.0-cp35-cp35m-win_amd64.whl、xgboost-0.6-cp35-cp35m-win_amd64.whl文件到Anaconda安装目录的Lib/site-packages

2、在所有程序中打开Anaconda3下的Anaconda Prompt

3、输入pip install --upgrade whl文件对应的路径(注意:要加上--upgrade,这样会自动安装TensorFlow、XGBoost需要的其他库,不然的话,可能会导致安装不成功。)
如果安装不成功的话,可以QQ联系我,我的QQ是980698552。


在Pycharm中编写程序,可以正确导入tensorflow和xgboost。
# coding: utf-8
import tensorflow as tf
import xgboost as xgb
from numpy.random import RandomState
batch_size = 8
w1 = tf.Variable(tf.random_normal([2,3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3,1], stddev=1, seed=1))
x = tf.placeholder(tf.float32,shape=(None,2), name="x-input")
y_ = tf.placeholder(tf.float32,shape=(None,1), name="y-input")
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
cross_entropy = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size,2)
Y = [[int(x1+x2<1)] for (x1, x2) in X]
with tf.Session() as sess:
init_op = tf.initialize_all_variables()
sess.run(init_op)
print(sess.run(w1))
print(sess.run(w2))
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % dataset_size
end = min(start + batch_size, dataset_size)
sess.run(train_step, feed_dict={x: X[start:end], y_:Y[start:end]})
if i%1000==0:
total_cross_entropy = sess.run(cross_entropy, feed_dict = {x:X,y_:Y})
print("After %d trainingstep(s), cross entropy on all data is %g" % (i, total_cross_entropy))
print(sess.run(w1))
print(sess.run(w2))

网友评论