二分求幂

作者: faterazer | 来源:发表于2019-06-03 21:19 被阅读1次

二分求幂法是快速计算形如 a^b 的求幂运算的方法。朴素计算 a^b 的方式是将 a 连乘 b 次,代码如下:

int result = 1;
for (int i = 0; i != b; i++)
    result *= a;

这需要计算 b 次,而实际真的需要运算这么多次吗?答案是不需要,利用二分求幂法,我们可以使运算次数大大小于 b 次。那么什么是二分求幂法呢?我们先考虑一个具体的计算:a^{32} = \; ?

首先,我们需要想到:a^{32} = a^{16} \times a^{16}。这说明当我们计算出 a^{16} 的值后,再去计算 a^{32} 的值并不需要再连乘 a 十六次,我们只需要自乘一次 a^{16} 即可,这便大大降低了运算步骤。

如果我们想到了 a^{32} = a^{16} \times a^{16},那么我们也可以很自然的进一步想到 a^{16} = a^{8} \times a^{8},这同样大大简化了计算 a^{16} 的步骤:当我们得到 a^8 的值时,只需再自乘一次 a^8 即可得到 a^{16} 的值,而无需连乘 8 次 a。继续这样推演下去,我们可以得到以下的式子:
\begin{align} a^{32} &= a^{16} \times a^{16} \\[1ex] a^{16} &= a^{8} \times a^{8} \\[1ex] a^8 &= a^4 \times a^4 \\[1ex] a^4 &= a^2 \times a^2 \\[1ex] a^2 &= a \times a \\[1ex] a^1 &= 1 \end{align}
我们可以发现,通过二分求幂的方法,仅需 6 次运算即可得到结果,而在朴素求幂的方法中足足需要 32 次!

但我们发现一个问题:32 刚好是 2 的 5 次方,所以 32 可以一直被二分到 1 为止,如果失去这种特殊性,我们还可以使用二分求幂吗?答案也是可以的,以计算 a^{31} 为例:

\begin{align} a^{31} &= a^{16} \times a^{15} \\[1ex] &= a^{16} \times a^8 \times a^7 \\[1ex] &= a^{16} \times a^8 \times a^4 \times a^3 \\[1ex] &= a^{16} \times a^8 \times a^4 \times a^2 \times a^1 \end{align}

当我们得到上面的拆分结果后,再计算 a^{31} 就轻松多了。当我们得到 a 的值时,自乘一次即可得到 a^2,再自乘一次即可得到 a^4,再自乘一次得到 a^8,再自乘一次得到 a^{16},我们最后将这些中间结果乘到一起就计算出了 a^{31} 的值。利用二分求幂,计算出 a^{31} 仅需要 5 次运算,而朴素求幂足足需要 31 次!

现在我们已经充分认识到了二分求幂法的威力,但想要完全掌握这一方法,我们还需要攻克一个核心问题——如何正确的分解指数,使其可以满足二分求幂的运算过程(如上述对 a^{31} 的分解)。对于一般化的 a^b,我们可以这样考虑:
a^b = a^{b_1 + b_2 + b_3 + \cdots} = a^{b_1} \cdot a^{b_2} \cdot a^{b_3} \cdots \\[1ex] b_1 + b_2 + b_3 + \cdots = b \\[1ex] \lbrace b_1, b_2, b_3, \cdots \rbrace \subset \lbrace 1,2,4, 8, \cdots \rbrace = \lbrace 2^0, 2^1, 2^2, \cdots, 2^n \rbrace

显然,这样分解出来的指数 b_1, b_2, b_3, \cdots 满足二分求幂的运算过程。因为,在二分求幂过程中,从 a 开始不断自乘,我们可以得到:a^1, a^2, a^4, a^8, \cdots,所以,我们分解出来的 a^{b_1}, a^{b_2}, a^{b_3}, \cdots 必须属于自乘得到的序列,即指数 \lbrace b_1, b_2, b_3, \cdots \rbrace \subset \lbrace 1, 2, 4, 8, \cdots \rbrace,而 \lbrace 1, 2, 4, 8, \cdots \rbrace 又等于 \lbrace 2^0, 2^1, 2^3, 2^4, \cdots \rbrace,看到这里,我们只需要再迈出最后一步——联想到二进制,就可以完全掌握二分求幂法了。

对于任何一个指数 b,我们可以将其转化为二进制形式,这个二进制串中所有值为 1 的位置所代表的值,就是二分求幂法所需要的分解结果。现在用这样的视角再次回顾之前的 a^{31},指数 31 的二进制形式为 11111,这个二进制串从低位到高位每一个 1 的值如下:
\begin{align} 2^0 &= 1 \\[1ex] 2^1 &= 2 \\[1ex] 2^2 &= 4 \\[1ex] 2^3 &= 8 \\[1ex] 2^4 &= 16 \\[1ex] \end{align}
我们可以发现,这些值正好是分解后的结果,即 a^{31} = a^{16} \times a^8 \times a^4 \times a^2 \times a^1,然后就可以轻松的利用二分求幂法快速计算出结果了。

再分析一个具体的例子:计算 a^{177} 的值。指数 177 的二进制形式是 10110001,所有值为 1 的位置代表的值分别是:
\begin{align} 2^0 &= 1 \\[1ex] 2^4 &= 16 \\[1ex] 2^5 &= 32 \\[1ex] 2^7 &= 128 \end{align}
从而可以将 a^{177} 分解为 a^{128} \cdot a^{32} \cdot a^{16} \cdot a^1,然后利用二分求幂,从 a 开始,自乘一次得到 a^2,再自乘一次得到 a^4,以此类推,直到得到 a^{128}。这些中间结果中,对我们有用的是 a, a^{16}, a^{32}, a^{128},我们把它们乘到一起,就计算出了 a^{177} 的值。从程序运行的角度来看,利用二分求幂,得到这个结果需要循环 8 次,而如果要在朴素求幂算法中得到这一结果,则需要运行 177 次!显然,要计算的幂指数越大,二分求幂的优势也就愈加明显。

最后简单地用程序语言表达如何计算 a^b

int fun(int a, int b) {
    int result = 1;
    while (b) {
        if (b % 2 == 1)
            result *= a;
        a *= a;
        b /= 2;
    }
    return result;
}

参考资料:

  1. 王道论坛编组.王道论坛计算机考研机试指南[M]. :, 2013. 101-105.

相关文章

  • 数据结构-二分法求幂-C

    二分法求幂 数据结构中二分法运用到求幂提高计算效率方式,算法精简这里做个简单解释及代码 原理自析 如求2^32: ...

  • 二分求幂

    二分求幂法是快速计算形如 的求幂运算的方法。朴素计算 的方式是将 连乘 次,代码如下: 这需要计算 次,...

  • 快速幂

    常规求幂 快速求幂(一般) 快速求幂 (递归) 快速求幂(位运算) 快速求幂(位运算,更简洁)

  • LeetCode 力扣 50. Pow(x, n)

    题目描述(中等难度) 就是求幂次方。 解法一 求幂次方,用最简单的想法,就是写一个 for 循环累乘。 至于求负幂...

  • 求幂、快速幂运算

    对一个给定的数计算乘幂。这一过程的参数是一个基数b和一个正整数的指数n,过程计算出b ^ n。一种方式是通过下面这...

  • 2021-10-12leetcode

    快速加 快速幂 二分图的最大匹配 一次A掉

  • 分治求幂

    给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方

  • 二分求幂——人见人爱的A^B

    解题思路: 分解a的b次为若干个a的2^k次的积。 本题要求的仅是最后结果的后三位数,那么我们在保存为计算该最终值...

  • Python 运算符

    一. 运算符 +, -, *, /, **(幂运算), < , >, !=,<=, >=, ==, //(求余的整...

  • 二分快速幂

网友评论

    本文标题:二分求幂

    本文链接:https://www.haomeiwen.com/subject/qdihxctx.html