哈夫曼树(Huffman Tree)
给定N个权值作为N个叶子节点,构造一棵二叉树,如果该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也成为哈夫曼树(Huffman Tree),
带权路径长度:节点到跟的路径长度 乘以 权值。
树的带权路径长度:树中所有叶子节点的带权路径长度之和。
WPL(weight path length): 权值路径长度
构建一颗哈夫曼树的基本原理是:权值大的用短路径,权值小的用长路径。
1:将N个权值有小到大排序;
2:选取最小的两个权值,作为左右子节点,构建成一个小二叉树;两个权值和为一个额外的节点作为跟节点。
3:再选取最小的权值,构建一个新的小二叉树,然后和上步的小二叉树链接到一块;直到权值都用完,变成一棵树。
构建过程示例:
示例2
示例3
示例4
哈夫曼编码
哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,可变字长编码(VLC)的一种。该方法完全依据字符出现概率,来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码(有时也称为霍夫曼编码)。
哈夫曼树的应用很广,哈夫曼编码就是其在电讯通信中的应用之一。广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。在电讯通信业务中,通常用二进制编码来表示字母或其他字符,并用这样的编码来表示字符序列。
例:如果需传送的电文为 ‘BADCADFEED’,它只用到6种字符,用两位二进制编码便可分辨。假设 A, B, C, D,E,F 的编码分别为 00, 01,10, 11,则上述电文便为 ‘001 000 011 010 000 011 101 100 100 011’(共 30 位),译码员按两位进行分组译码,便可恢复原来的电文。
压缩电文 哈夫曼树节点结构
哈夫曼树构建&编码实现
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
const int MaxValue = 10000;//初始设定的权值最大值
const int MaxBit = 4;//初始设定的最大编码位数
const int MaxN = 10;//初始设定的最大结点个数
typedef struct HaffNode{
int weight;
int flag;
int parent;
int leftChild;
int rightChild;
}HaffNode;
typedef struct Code//存放哈夫曼编码的数据元素结构
{
int bit[MaxBit];//数组
int start; //编码的起始下标
int weight;//字符的权值
}Code;
//1.
//根据权重值,构建哈夫曼树;
//{2,4,5,7}
//n = 4;
void Haffman(int weight[],int n,HaffNode *haffTree){
int j,m1,m2,x1,x2;
//1.哈夫曼树初始化
//n个叶子结点. 2n-1
for(int i = 0; i < 2*n-1;i++){
if(i<n)
haffTree[i].weight = weight[i];
else
haffTree[i].weight = 0;
haffTree[i].parent = 0;
haffTree[i].flag = 0;
haffTree[i].leftChild = -1;
haffTree[i].rightChild = -1;
}
//2.构造哈夫曼树haffTree的n-1个非叶结点
for (int i = 0; i< n - 1; i++){
m1 = m2 = MaxValue;
x1 = x2 = 0;
//2,4,5,7
for (j = 0; j< n + i; j++)//循环找出所有权重中,最小的二个值--morgan
{
if (haffTree[j].weight < m1 && haffTree[j].flag == 0)
{
m2 = m1;
x2 = x1;
m1 = haffTree[j].weight;
x1 = j;
} else if(haffTree[j].weight<m2 && haffTree[j].flag == 0)
{
m2 = haffTree[j].weight;
x2 = j;
}
}
//3.将找出的两棵权值最小的子树合并为一棵子树
haffTree[x1].parent = n + i;
haffTree[x2].parent = n + i;
//将2个结点的flag 标记为1,表示已经加入到哈夫曼树中
haffTree[x1].flag = 1;
haffTree[x2].flag = 1;
//修改n+i结点的权值
haffTree[n + i].weight = haffTree[x1].weight + haffTree[x2].weight;
//修改n+i的左右孩子的值
haffTree[n + i].leftChild = x1;
haffTree[n + i].rightChild = x2;
}
}
/*
9.2 哈夫曼编码
由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
//{2,4,5,7}
*/
void HaffmanCode(HaffNode haffTree[], int n, Code haffCode[])
{
//1.创建一个结点cd
Code *cd = (Code * )malloc(sizeof(Code));
int child, parent;
//2.求n个叶结点的哈夫曼编码
for (int i = 0; i<n; i++)
{
//从0开始计数
cd->start = 0;
//取得编码对应权值的字符
cd->weight = haffTree[i].weight;
//当叶子结点i 为孩子结点.
child = i;
//找到child 的双亲结点;
parent = haffTree[child].parent;
//由叶结点向上直到根结点
while (parent != 0)
{
if (haffTree[parent].leftChild == child)
cd->bit[cd->start] = 0;//左孩子结点编码0
else
cd->bit[cd->start] = 1;//右孩子结点编码1
//编码自增
cd->start++;
//当前双亲结点成为孩子结点
child = parent;
//找到双亲结点
parent = haffTree[child].parent;
}
int temp = 0;
//以上树的编码是从叶节点往跟节点走向,路径编码需要倒序
for (int j = cd->start - 1; j >= 0; j--){
temp = cd->start-j-1;
haffCode[i].bit[temp] = cd->bit[j];
}
//把cd中的数据赋值到haffCode[i]中.
//保存好haffCode 的起始位以及权值;
haffCode[i].start = cd->start;
//保存编码对应的权值
haffCode[i].weight = cd->weight;
}
}
测试:
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, 哈夫曼编码!\n");
int i, j, n = 4, m = 0;
//权值
int weight[] = {2,4,5,7};
//初始化哈夫曼树, 哈夫曼编码
HaffNode *myHaffTree = malloc(sizeof(HaffNode)*2*n-1);
Code *myHaffCode = malloc(sizeof(Code)*n);
//当前n > MaxN,表示超界. 无法处理.
if (n>MaxN)
{
printf("定义的n越界,修改MaxN!");
exit(0);
}
//1. 构建哈夫曼树
Haffman(weight, n, myHaffTree);
//2.根据哈夫曼树得到哈夫曼编码
HaffmanCode(myHaffTree, n, myHaffCode);
//3.
for (i = 0; i<n; i++)
{
printf("Weight = %d\n",myHaffCode[i].weight);
for (j = 0; j<myHaffCode[i].start; j++)
printf("%d",myHaffCode[i].bit[j]);
m = m + myHaffCode[i].weight*myHaffCode[i].start;
printf("\n");
}
printf("Huffman's WPS is:%d\n",m);
return 0;
}
//
Hello, 哈夫曼编码!
Weight = 2
110
Weight = 4
111
Weight = 5
10
Weight = 7
0
Huffman's WPS is:35
网友评论