美文网首页R可视化ggplotresearch
跟着PNAS学作图 | 提供全文数据和代码

跟着PNAS学作图 | 提供全文数据和代码

作者: 小杜的生信筆記 | 来源:发表于2023-03-29 14:43 被阅读0次

    论文

    题目:Death rates at specific life stages mold the sex gap in life expectancy

    网址: https://www.pnas.org/doi/full/10.1073/pnas.2010588118

    代码网址

    https://github.com/CPop-SDU/sex-gap-e0-pnas
    

    该文章发表于2021年,论文中图形对我们一部分同学仍具参考价值。作者提供的全套的代码和数据,可以直接使用。此外,作者的数据和代码写的非常的规整。但是,需要看懂和运行代码,还是需要有一定的基础。

    论文主图

    论文主图仅有两张,如下图所示。



    代码

    Figure 1

    
    # function to localize paths
    
    devtools::source_gist("32e9aa2a971c6d2682ea8d6af5eb5cde")
    
    # prepare session
    source(lp("0-prepare-session.R"))
    
    
    # theme -------------------------------------------------------------------
    load("../dat/palettes.rda" %>% lp)
    
    theme_custom <- theme_minimal(base_family = font_rc) +
        theme(
            legend.position = "bottom",
            strip.background = element_blank(),
            strip.text = element_blank(),
            panel.grid.minor =  element_blank(),
            panel.grid.major =  element_line(size = .25),
            panel.ontop = T
        )
    

    作者将相关的代码编写在其他的R脚本中,使用时直接进行调用。
    [图片上传失败...(image-122af8-1680158585814)]

    # Fig 1 -- RELATIVE ----------------------------------
    load("../dat/a6gap33cntrs.rda" %>% lp)
    
    # relative
    df6 %>% 
        filter(country %>% is_in(c("SWE", "USA", "JPN", "RUS"))) %>%
        mutate(
            name = name %>% 
                fct_recode(USA = "United States") %>% 
                fct_rev()
        ) %>%
        ggplot() +
        geom_col(
            aes(year, ctb_rel %>% multiply_by(100), fill = age_group),
            position = position_stack(reverse = TRUE),
            color = NA,
            width = 1
        ) +
        facet_grid(name ~ ., scales = "free_y", space = "free") +
        coord_cartesian(ylim = c(-10, 120), expand = FALSE)+
        scale_x_continuous(breaks = seq(1800, 2000, 50))+
        scale_y_continuous(breaks = seq(0, 100, 25), position = "right")+
        scale_fill_manual(
            values = pal_six, 
            guide  = guide_legend(ncol = 1, reverse = TRUE)
        ) +
        theme_minimal(base_family = font_rc, base_size = 20) +
        theme(
            legend.position = c(.6, .5),
            strip.background = element_blank(),
            strip.text = element_blank(),
            panel.grid.minor =  element_blank(),
            panel.grid.major =  element_line(size = .1),
            panel.spacing = unit(0, "lines"),
            panel.ontop = T
        )+
        labs(x = NULL,
             y = "Contribution, %",
             fill = "Age group")+
        # label countries
        geom_text(data = . %>% select(name, row, column) %>%  distinct(),
                  aes(label = name, color = name), 
                  x = 2015, y = 120, 
                  hjust = 1, vjust = 1, size = 9, fontface = 2,
                  family = font_rc)+
        scale_color_manual(values = pal_four %>% rev, 
                           guide = FALSE)
    
    one_outer <- last_plot()
    one_outer
    
    # plot ratio
    load("../dat/df4qx.rda" %>% lp)
    
    df4qx %>%
        pivot_wider(names_from = sex, values_from = qx) %>% 
        ggplot(aes(age, y = m/f, color = country))+
        geom_hline(yintercept = 1, color = "gray25",  size = .5)+
        geom_smooth(se = F, size = 1, color = "#ffffff", span = .25)+
        geom_smooth(se = F, size = .5, span = .25)+
        scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+
        scale_y_continuous(
            trans = "log", 
            breaks = c(.5, 1, 2, 3), 
            labels = c("", 1, 2, 3),
            limits = c(.75, 3.5)
        )+
        scale_color_manual(NULL, values = pal_four)+
        theme_minimal(base_family = font_rc, base_size = 16)+
        theme(
            legend.position = "none",
            panel.grid.minor = element_blank()
        )+
        labs(
            y = "Sex ratio, log scale",
            x = "Age"
        )+
        annotate(
            "text", x = 50, y = .9, 
            label = "Most recent year",
            size = 8.5, color = "grey50", alpha = .5,
            vjust = 1, family = font_rc, fontface = 2
        )
    
    one_a <- last_plot()
    one_a
    # Death risk Ratio, Sweden, years 1750, 1800, 1850, 1900, 1960, 2019
    # plot qx
    load("../dat/qxdiff.rda" %>% lp)
    
    qxdiff %>% 
        filter(country == "SWE", 
               year %>% is_in(c(1800, 1900, 1960, 2019 ))) %>% 
        ggplot(aes(age, y = ratio, color = year %>% factor))+
        geom_hline(yintercept = 1, color = "gray25",  size = .5)+
        geom_smooth(se = F, size = .75, span = .4)+
        scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+
        scale_y_continuous(
            trans = "log", 
            breaks = c(.5, 1, 2, 3), 
            labels = c("", 1, 2, 3),
            limits = c(.75, 3.5)
        )+
        scale_color_viridis_d(end = .97)+
        theme_minimal(base_family = font_rc, base_size = 16)+
        theme(
            legend.position = c(.85, .75),
            legend.spacing.x = unit(.1, "line"),
            legend.key.height = unit(1, "line"),
            panel.grid.minor = element_blank()
        )+
        labs(
            color = "Year",
            y = "Sex ratio, log scale",
            x = "Age"
        )+
        annotate(
            "text", x = 50, y = .9, 
            label = "Sweden",
            size = 8.5, color = "#009C9C", 
            vjust = 1, family = font_rc, fontface = 2
        )
    
    one_b <- last_plot()
    one_b
    
    # plot difference
    df4qx %>%
        pivot_wider(names_from = sex, values_from = qx) %>% 
        ggplot(aes(x = age, y = m - f, color = country, group = country)) +
        geom_path(size = .5)+
        scale_color_manual(NULL, values = pal_four)+
        scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+
        scale_y_continuous(
            trans = "log",
            breaks = c(.0001, .001, .01, .05),
            labels = c(.0001, .001, .01, .05) %>% paste %>% str_replace("0.", "."),
            limits = c(9e-6, .1)
        )+
        theme_minimal(base_family = font_rc, base_size = 16)+
        theme(legend.position = c(.77, .25),
              legend.spacing.x = unit(.1, "line"),
              legend.key.height = unit(1, "line"),
              legend.text = element_text(size = 16),
              panel.grid.minor = element_blank())+
        labs(
            y = "Sex gap, log scale",
            x = "Age"
        )
    
    one_c <- last_plot()
    one_c
    
    # arrange and save
    blank <- ggplot(tibble(x = 1, y = 1), aes(x, y))+
        geom_rect(xmin = -Inf, xmax = Inf,
                  ymin = -Inf, ymax = Inf,
                  fill = "#ffffff",
                  color = NA)+
        theme_void()
    
    library(cowplot)
    one <- ggdraw() +
        draw_plot(one_outer) +
        # white space for plots
        draw_plot(blank, x = 0, y = .75, width = 0.7, height = 0.25)+
        draw_plot(blank, x = 0, y = .55, width = 0.33, height = 0.42)+
        draw_plot(blank, x = 0, y = .33, width = 0.33, height = 0.67)+
        # inset plots
        draw_plot(one_a, x = 0, y = .66, width = .33, height = .33)+
        draw_plot(one_c, x = .34, y = .66, width = .33, height = .33)+
        draw_plot(one_b, x = 0, y = 0.35, width = .33, height = .33)+
        # annotate plot letters
        draw_text(
            LETTERS[c(1,3,2,4)],  
            x = c(.01, .35, .01, .01),
            y = c(.99, .99, .66, .3), 
            hjust = 0,  vjust = 1, size = 20, 
            family = font_rc, fontface = 2
        )
    
    ggsave(
        filename = "out/main-one.png" %>% lp, 
        plot = one, width = 10, height = 10, 
        type = "cairo-png"
    )
    

    **这样一连串的的就绘制出图1。但是,有多少同学可以知道作者绘制每个图形的数据类型是什么样呢?
    **

    如果大家有时间时间和精力可以可以试一下,如果不行,那么在本文的中点赞或留言,我们一起分开绘制每个图形,一起学习!!!!

    附图

    appendix-1b.png
    appendix-1c.png
    appendix-3.png
    appendix-8.png

    ENDING!!


    往期文章:
    1. 最全WGCNA教程(替换数据即可出全部结果与图形)

    WGCNA分析 | 全流程分析代码 | 代码一

    WGCNA分析 | 全流程分析代码 | 代码二

    WGCNA分析 | 全流程代码分享 | 代码三


    2. 精美图形绘制教程

    精美图形绘制教程

    小杜的生信筆記,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

    相关文章

      网友评论

        本文标题:跟着PNAS学作图 | 提供全文数据和代码

        本文链接:https://www.haomeiwen.com/subject/qiufddtx.html